製品: PER2 Antibody
カタログ: DF12304
タンパク質の説明: Rabbit polyclonal antibody to PER2
アプリケーション: WB IHC IF/ICC
反応性: Human, Mouse, Rat
予測: Pig, Horse, Dog, Chicken
分子量: 136,200kD; 137kD(Calculated).
ユニプロット: O15055
RRID: AB_2845109

類似製品を見る>>

   サイズ 価格 在庫状況
 100ul $280 在庫あり
 200ul $350 在庫あり

リードタイム: 当日配達

For pricing and ordering contact:
お問い合わせ先

製品説明

ソース:
Rabbit
アプリケーション:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

反応性:
Human,Mouse,Rat
予測:
Pig(100%), Horse(100%), Dog(100%), Chicken(100%)
クローナリティ:
Polyclonal
特異性:
PER2 Antibody detects endogenous levels of total PER2.
RRID:
AB_2845109
引用形式: Affinity Biosciences Cat# DF12304, RRID:AB_2845109.
コンジュゲート:
Unconjugated.
精製:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
別名:

折りたたみ/展開

Circadian clock protein PERIOD 2; FASPS; FASPS1; hPER 2; hPER2; KIAA0347; OTTHUMP00000164476; PER 2; PER2; PER2_HUMAN; Period 2; Period 2 isoform 1; Period circadian clock 2; Period circadian protein 2; Period circadian protein homolog 2; Period homolog 2 (Drosophila); Period homolog 2; Period, Drosophila, homolog of, 2; Period2;

免疫原

免疫原:
Uniprot:
遺伝子(ID):
発現特異性:
O15055 PER2_HUMAN:

Widely expressed. Found in heart, brain, placenta, lung, liver, skeleatal muscle, kidney and pancreas. High levels in skeletal muscle and pancreas. Low levels in lung. Isoform 2 is expressed in keratinocytes (at protein level).

タンパク質配列:
MNGYAEFPPSPSNPTKEPVEPQPSQVPLQEDVDMSSGSSGHETNENCSTGRDSQGSDCDDSGKELGMLVEPPDARQSPDTFSLMMAKSEHNPSTSGCSSDQSSKVDTHKELIKTLKELKVHLPADKKAKGKASTLATLKYALRSVKQVKANEEYYQLLMSSEGHPCGADVPSYTVEEMESVTSEHIVKNADMFAVAVSLVSGKILYISDQVASIFHCKRDAFSDAKFVEFLAPHDVGVFHSFTSPYKLPLWSMCSGADSFTQECMEEKSFFCRVSVRKSHENEIRYHPFRMTPYLVKVRDQQGAESQLCCLLLAERVHSGYEAPRIPPEKRIFTTTHTPNCLFQDVDERAVPLLGYLPQDLIETPVLVQLHPSDRPLMLAIHKKILQSGGQPFDYSPIRFRARNGEYITLDTSWSSFINPWSRKISFIIGRHKVRVGPLNEDVFAAHPCTEEKALHPSIQELTEQIHRLLLQPVPHSGSSGYGSLGSNGSHEHLMSQTSSSDSNGHEDSRRRRAEICKNGNKTKNRSHYSHESGEQKKKSVTEMQTNPPAEKKAVPAMEKDSLGVSFPEELACKNQPTCSYQQISCLDSVIRYLESCNEAATLKRKCEFPANVPALRSSDKRKATVSPGPHAGEAEPPSRVNSRTGVGTHLTSLALPGKAESVASLTSQCSYSSTIVHVGDKKPQPELEMVEDAASGPESLDCLAGPALACGLSQEKEPFKKLGLTKEVLAAHTQKEEQSFLQKFKEIRKLSIFQSHCHYYLQERSKGQPSERTAPGLRNTSGIDSPWKKTGKNRKLKSKRVKPRDSSESTGSGGPVSARPPLVGLNATAWSPSDTSQSSCPAVPFPAPVPAAYSLPVFPAPGTVAAPPAPPHASFTVPAVPVDLQHQFAVQPPPFPAPLAPVMAFMLPSYSFPSGTPNLPQAFFPSQPQFPSHPTLTSEMASASQPEFPSRTSIPRQPCACPATRATPPSAMGRASPPLFQSRSSSPLQLNLLQLEEAPEGGTGAMGTTGATETAAVGADCKPGTSRDQQPKAPLTRDEPSDTQNSDALSTSSGLLNLLLNEDLCSASGSAASESLGSGSLGCDASPSGAGSSDTSHTSKYFGSIDSSENNHKAKMNTGMEESEHFIKCVLQDPIWLLMADADSSVMMTYQLPSRNLEAVLKEDREKLKLLQKLQPRFTESQKQELREVHQWMQTGGLPAAIDVAECVYCENKEKGNICIPYEEDIPSLGLSEVSDTKEDENGSPLNHRIEEQT

種類予測

種類予測:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Pig
100
Horse
100
Dog
100
Chicken
100
Rabbit
67
Zebrafish
40
Bovine
0
Sheep
0
Xenopus
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

PTMs - O15055 基板として

Site PTM Type Enzyme
Phosphorylation
Ubiquitination
S53 Phosphorylation
S77 Phosphorylation
K113 Ubiquitination
S259 Phosphorylation
K384 Ubiquitination
K453 Ubiquitination
K539 Acetylation
K553 Acetylation
S566 O-Glycosylation
S580 O-Glycosylation
S627 Phosphorylation
T645 Phosphorylation
T649 Phosphorylation
T652 Phosphorylation
S653 O-Glycosylation
S662 O-Glycosylation
S662 Phosphorylation P48730 (CSNK1D) , P49674 (CSNK1E)
S665 Phosphorylation P48730 (CSNK1D) , P49674 (CSNK1E)
S668 O-Glycosylation
S668 Phosphorylation P49674 (CSNK1E) , P48730 (CSNK1D)
S671 O-Glycosylation
T734 O-Glycosylation
K744 Ubiquitination
S766 Phosphorylation
T774 Phosphorylation
T781 Phosphorylation
S782 Phosphorylation
S786 Phosphorylation
S810 Phosphorylation
T965 O-Glycosylation
T968 Phosphorylation
S977 Phosphorylation
S983 O-Glycosylation
S1105 Phosphorylation
S1108 Phosphorylation
S1109 Phosphorylation
K1184 Ubiquitination

研究背景

機能:

Transcriptional repressor which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, ARNTL/BMAL1, ARNTL2/BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndrome and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and ARNTL/BMAL1 or ARNTL2/BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-ARNTL/BMAL1|ARNTL2/BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress ARNTL/BMAL1 transcription, respectively. PER1 and PER2 proteins transport CRY1 and CRY2 into the nucleus with appropriate circadian timing, but also contribute directly to repression of clock-controlled target genes through interaction with several classes of RNA-binding proteins, helicases and others transcriptional repressors. PER appears to regulate circadian control of transcription by at least three different modes. First, interacts directly with the CLOCK-ARTNL/BMAL1 at the tail end of the nascent transcript peak to recruit complexes containing the SIN3-HDAC that remodel chromatin to repress transcription. Second, brings H3K9 methyltransferases such as SUV39H1 and SUV39H2 to the E-box elements of the circadian target genes, like PER2 itself or PER1. The recruitment of each repressive modifier to the DNA seems to be very precisely temporally orchestrated by the large PER complex, the deacetylases acting before than the methyltransferases. Additionally, large PER complexes are also recruited to the target genes 3' termination site through interactions with RNA-binding proteins and helicases that may play a role in transcription termination to regulate transcription independently of CLOCK-ARTNL/BMAL1 interactions. Recruitment of large PER complexes to the elongating polymerase at PER and CRY termination sites inhibited SETX action, impeding RNA polymerase II release and thereby repressing transcriptional reinitiation. May propagate clock information to metabolic pathways via the interaction with nuclear receptors. Coactivator of PPARA and corepressor of NR1D1, binds rhythmically at the promoter of nuclear receptors target genes like ARNTL or G6PC. Directly and specifically represses PPARG proadipogenic activity by blocking PPARG recruitment to target promoters and thereby inhibiting transcriptional activation. Required for fatty acid and lipid metabolism, is involved as well in the regulation of circulating insulin levels. Plays an important role in the maintenance of cardiovascular functions through the regulation of NO and vasodilatatory prostaglandins production in aortas. Controls circadian glutamate uptake in synaptic vesicles through the regulation of VGLUT1 expression. May also be involved in the regulation of inflammatory processes. Represses the CLOCK-ARNTL/BMAL1 induced transcription of BHLHE40/DEC1 and ATF4. Negatively regulates the formation of the TIMELESS-CRY1 complex by competing with TIMELESS for binding to CRY1.

PTMs:

Acetylated. Deacetylated by SIRT1, resulting in decreased protein stability.

Phosphorylated by CSNK1E and CSNK1D. Phosphorylation results in PER2 protein degradation. May be dephosphorylated by PP1.

Ubiquitinated, leading to its proteasomal degradation. Ubiquitination may be inhibited by CRY1.

細胞の位置付け:

Nucleus. Cytoplasm. Cytoplasm>Perinuclear region.
Note: Nucleocytoplasmic shuttling is effected by interaction with other circadian core oscillator proteins and/or by phosphorylation. Translocate to the nucleus after phosphorylation by CSNK1D or CSNK1E. Also translocated to the nucleus by CRY1 or CRY2. PML regulates its nuclear localization.

Nucleus>Nucleolus.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
組織特異性:

Widely expressed. Found in heart, brain, placenta, lung, liver, skeleatal muscle, kidney and pancreas. High levels in skeletal muscle and pancreas. Low levels in lung. Isoform 2 is expressed in keratinocytes (at protein level).

サブユニット構造:

Homodimer. Component of the circadian core oscillator, which includes the CRY proteins, CLOCK or NPAS2, ARTNL/BMAL1 or ARTNL2/BMAL2, CSNK1D and/or CSNK1E, TIMELESS, and the PER proteins. Interacts with CLOCK-ARNTL/BMAL1 (off DNA).Interacts with ARNTL2/BMAL2. Interacts directly with PER1 and PER3, and through a C-terminal domain, with CRY1 and CRY2. Interacts, via its second PAS domain, with TIMELESS in vitro. Interacts with NFIL3. Different large complexes have been identified with different repressive functions. The core of PER complexes is composed of at least PER1, PER2, PER3, CRY1, CRY2, CSNK1D and/or CSNK1E. The large PER complex involved in the repression of transcriptional termination is composed of at least PER2, CDK9, DDX5, DHX9, NCBP1 and POLR2A (active). The large PER complex involved in the histone deacetylation is composed of at least HDAC1, PER2, SFPQ and SIN3A. The large PER complex involved in the histone methylation is composed of at least PER2, CBX3, TRIM28, SUV39H1 and/or SUV39H2; CBX3 mediates the formation of the complex. Interacts with SETX; the interaction inhibits termination of circadian target genes. Interacts with the nuclear receptors HNF4A, NR1D1, NR4A2, RORA, PPARA, PPARG and THRA; the interaction with at least PPARG is ligand dependent. Interacts with PML. Interacts (phosphorylated) with BTRC and FBXW11; the interactions trigger proteasomal degradation. Interacts with NONO and SFPQ. Interacts with SIRT1 and CAVIN3 (By similarity). Interacts with MAGEL2 (By similarity). Interacts with MAP1LC3B (By similarity). Interacts with HNF4A.

研究領域

· Human Diseases > Infectious diseases: Viral > Herpes simplex infection.

· Human Diseases > Cancers: Overview > Transcriptional misregulation in cancer.

· Human Diseases > Cancers: Specific types > Acute myeloid leukemia.   (View pathway)

· Organismal Systems > Environmental adaptation > Circadian rhythm.   (View pathway)

· Organismal Systems > Environmental adaptation > Circadian entrainment.

参考文献

1). IDH1 gene mutation activates Smad signaling molecules to regulate the expression levels of cell cycle and biological rhythm genes in human glioma U87‑MG cells. Molecular Medicine Reports, 2021 (PubMed: 33760141) [IF=3.4]

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.