製品: Phospho-NF-kB p65 (Ser311) Antibody
カタログ: AF3389
タンパク質の説明: Rabbit polyclonal antibody to Phospho-NF-kB p65 (Ser311)
アプリケーション: WB IHC IF/ICC
反応性: Human, Mouse, Rat
予測: Pig, Bovine, Horse, Sheep, Dog
分子量: 65kDa; 60kD(Calculated).
ユニプロット: Q04206
RRID: AB_2827387

類似製品を見る>>

   サイズ 価格 在庫状況
 100ul $280 在庫あり
 200ul $350 在庫あり

リードタイム: 当日配達

For pricing and ordering contact:
お問い合わせ先

製品説明

ソース:
Rabbit
アプリケーション:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

反応性:
Human,Mouse,Rat
予測:
Pig(100%), Bovine(100%), Horse(100%), Sheep(100%), Dog(100%)
クローナリティ:
Polyclonal
特異性:
Phospho-NF-kB p65 (Ser311) Antibody detects endogenous levels of NF-kB p65 only when phosphorylated at Serine 311.
RRID:
AB_2827387
引用形式: Affinity Biosciences Cat# AF3389, RRID:AB_2827387.
コンジュゲート:
Unconjugated.
精製:
The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho-peptide and non-phospho-peptide affinity columns.
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
別名:

折りたたみ/展開

Avian reticuloendotheliosis viral (v rel) oncogene homolog A; MGC131774; NF kappa B p65delta3; NFKB3; Nuclear Factor NF Kappa B p65 Subunit; Nuclear factor NF-kappa-B p65 subunit; Nuclear factor of kappa light polypeptide gene enhancer in B cells 3; Nuclear factor of kappa light polypeptide gene enhancer in B-cells 3; OTTHUMP00000233473; OTTHUMP00000233474; OTTHUMP00000233475; OTTHUMP00000233476; OTTHUMP00000233900; p65; p65 NF kappaB; p65 NFkB; relA; TF65_HUMAN; Transcription factor p65; v rel avian reticuloendotheliosis viral oncogene homolog A (nuclear factor of kappa light polypeptide gene enhancer in B cells 3 (p65)); V rel avian reticuloendotheliosis viral oncogene homolog A; v rel reticuloendotheliosis viral oncogene homolog A (avian); V rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light polypeptide gene enhancer in B cells 3, p65;

免疫原

免疫原:
Uniprot:
遺伝子(ID):
タンパク質の説明:
NFKB1 (MIM 164011) or NFKB2 (MIM 164012) is bound to REL (MIM 164910), RELA, or RELB (MIM 604758) to form the NFKB complex. The p50 (NFKB1)/p65 (RELA) heterodimer is the most abundant form of NFKB. The NFKB complex is inhibited by I-kappa-B proteins (NFKBIA, MIM 164008 or NFKBIB, MIM 604495), which inactivate NFKB by trapping it in the cytoplasm.
タンパク質配列:
MDELFPLIFPAEPAQASGPYVEIIEQPKQRGMRFRYKCEGRSAGSIPGERSTDTTKTHPTIKINGYTGPGTVRISLVTKDPPHRPHPHELVGKDCRDGFYEAELCPDRCIHSFQNLGIQCVKKRDLEQAISQRIQTNNNPFQVPIEEQRGDYDLNAVRLCFQVTVRDPSGRPLRLPPVLSHPIFDNRAPNTAELKICRVNRNSGSCLGGDEIFLLCDKVQKEDIEVYFTGPGWEARGSFSQADVHRQVAIVFRTPPYADPSLQAPVRVSMQLRRPSDRELSEPMEFQYLPDTDDRHRIEEKRKRTYETFKSIMKKSPFSGPTDPRPPPRRIAVPSRSSASVPKPAPQPYPFTSSLSTINYDEFPTMVFPSGQISQASALAPAPPQVLPQAPAPAPAPAMVSALAQAPAPVPVLAPGPPQAVAPPAPKPTQAGEGTLSEALLQLQFDDEDLGALLGNSTDPAVFTDLASVDNSEFQQLLNQGIPVAPHTTEPMLMEYPEAITRLVTGAQRPPDPAPAPLGAPGLPNGLLSGDEDFSSIADMDFSALLSQISS

種類予測

種類予測:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Pig
100
Horse
100
Bovine
100
Sheep
100
Dog
100
Xenopus
0
Zebrafish
0
Chicken
0
Rabbit
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

PTMs - Q04206 基板として

Site PTM Type Enzyme
M1 Acetylation
K37 Methylation
K37 Sumoylation
C38 S-Nitrosylation
S42 Phosphorylation
S45 Phosphorylation
K56 Ubiquitination
K62 Ubiquitination
T71 Phosphorylation
S75 Phosphorylation
K79 Ubiquitination
K93 Ubiquitination
S112 Phosphorylation
K122 Acetylation
K122 Ubiquitination
K123 Acetylation
K123 Ubiquitination
S131 Phosphorylation
T136 Phosphorylation
R174 Methylation
S180 Phosphorylation
R187 Methylation
K195 Ubiquitination
S205 Phosphorylation
K218 Acetylation
K218 Methylation
K218 Ubiquitination
K221 Acetylation
K221 Methylation
S238 Phosphorylation
S240 Phosphorylation
T254 Phosphorylation
S261 Phosphorylation
S269 Phosphorylation
S276 Phosphorylation P11309 (PIM1) , O94806 (PRKD3) , O75676 (RPS6KA4) , P17612 (PRKACA) , O75582 (RPS6KA5)
S281 Phosphorylation
T305 O-Glycosylation
T305 Phosphorylation
Y306 Phosphorylation
T308 Phosphorylation
K310 Acetylation
K310 Methylation
K310 Ubiquitination
S311 Phosphorylation Q05513 (PRKCZ)
K314 Acetylation
K314 Methylation
K314 Ubiquitination
K315 Acetylation
K315 Methylation
K315 Ubiquitination
S316 Phosphorylation P48729 (CSNK1A1)
S319 O-Glycosylation
T322 O-Glycosylation
S337 O-Glycosylation
S337 Phosphorylation
T352 O-Glycosylation
S374 O-Glycosylation
S374 Phosphorylation
S377 O-Glycosylation
T429 Phosphorylation
T435 Phosphorylation P28482 (MAPK1)
S468 Phosphorylation P49841 (GSK3B) , O14920 (IKBKB) , Q14164 (IKBKE)
S472 Phosphorylation
T505 Phosphorylation
S529 Phosphorylation P68400 (CSNK2A1) , P47710 (CSN1S1)
S536 Phosphorylation O15111 (CHUK) , O94806 (PRKD3) , Q9Y6K9 (IKBKG) , Q9UHD2 (TBK1) , Q9HCP0 (CSNK1G1) , Q16566 (CAMK4) , P51812 (RPS6KA3) , Q15418 (RPS6KA1) , Q00534 (CDK6) , O14920 (IKBKB) , P24723 (PRKCH) , Q14164 (IKBKE)
S543 Phosphorylation P68400 (CSNK2A1)
S547 Phosphorylation Q13315 (ATM)

研究背景

機能:

NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The heterodimeric RELA-NFKB1 complex appears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. The NF-kappa-B heterodimeric RELA-NFKB1 and RELA-REL complexes, for instance, function as transcriptional activators. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. The inhibitory effect of I-kappa-B on NF-kappa-B through retention in the cytoplasm is exerted primarily through the interaction with RELA. RELA shows a weak DNA-binding site which could contribute directly to DNA binding in the NF-kappa-B complex. Beside its activity as a direct transcriptional activator, it is also able to modulate promoters accessibility to transcription factors and thereby indirectly regulate gene expression. Associates with chromatin at the NF-kappa-B promoter region via association with DDX1. Essential for cytokine gene expression in T-cells. The NF-kappa-B homodimeric RELA-RELA complex appears to be involved in invasin-mediated activation of IL-8 expression.

PTMs:

Ubiquitinated by RNF182, leading to its proteasomal degradation. Degradation is required for termination of NF-kappa-B response.

Monomethylated at Lys-310 by SETD6. Monomethylation at Lys-310 is recognized by the ANK repeats of EHMT1 and promotes the formation of repressed chromatin at target genes, leading to down-regulation of NF-kappa-B transcription factor activity. Phosphorylation at Ser-311 disrupts the interaction with EHMT1 without preventing monomethylation at Lys-310 and relieves the repression of target genes (By similarity).

Phosphorylation at Ser-311 disrupts the interaction with EHMT1 and promotes transcription factor activity (By similarity). Phosphorylation on Ser-536 stimulates acetylation on Lys-310 and interaction with CBP; the phosphorylated and acetylated forms show enhanced transcriptional activity. Phosphorylation at Ser-276 by RPS6KA4 and RPS6KA5 promotes its transactivation and transcriptional activities.

Reversibly acetylated; the acetylation seems to be mediated by CBP, the deacetylation by HDAC3 and SIRT2. Acetylation at Lys-122 enhances DNA binding and impairs association with NFKBIA. Acetylation at Lys-310 is required for full transcriptional activity in the absence of effects on DNA binding and NFKBIA association. Acetylation at Lys-310 promotes interaction with BRD4. Acetylation can also lower DNA-binding and results in nuclear export. Interaction with BRMS1 promotes deacetylation of Lys-310. Lys-310 is deacetylated by SIRT2.

S-nitrosylation of Cys-38 inactivates the enzyme activity.

Sulfhydration at Cys-38 mediates the anti-apoptotic activity by promoting the interaction with RPS3 and activating the transcription factor activity.

Sumoylation by PIAS3 negatively regulates DNA-bound activated NF-kappa-B.

Proteolytically cleaved within a conserved N-terminus region required for base-specific contact with DNA in a CPEN1-mediated manner, and hence inhibits NF-kappa-B transcriptional activity.

細胞の位置付け:

Nucleus. Cytoplasm.
Note: Nuclear, but also found in the cytoplasm in an inactive form complexed to an inhibitor (I-kappa-B) (PubMed:1493333). Colocalized with DDX1 in the nucleus upon TNF-alpha induction (PubMed:19058135). Colocalizes with GFI1 in the nucleus after LPS stimulation (PubMed:20547752). Translocation to the nucleus is impaired in L.monocytogenes infection (PubMed:20855622).

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
サブユニット構造:

Component of the NF-kappa-B p65-p50 complex. Component of the NF-kappa-B p65-c-Rel complex. Homodimer; component of the NF-kappa-B p65-p65 complex. Component of the NF-kappa-B p65-p52 complex. May interact with ETHE1. Binds TLE5 and TLE1. Interacts with TP53BP2. Binds to and is phosphorylated by the activated form of either RPS6KA4 or RPS6KA5. Interacts with ING4 and this interaction may be indirect. Interacts with CARM1, USP48 and UNC5CL. Interacts with IRAK1BP1 (By similarity). Interacts with NFKBID (By similarity). Interacts with NFKBIA. Interacts with GSK3B. Interacts with NFKBIB (By similarity). Interacts with NFKBIE. Interacts with NFKBIZ. Interacts with EHMT1 (via ANK repeats) (By similarity). Part of a 70-90 kDa complex at least consisting of CHUK, IKBKB, NFKBIA, RELA, ELP1 and MAP3K14. Interacts with HDAC3; HDAC3 mediates the deacetylation of RELA. Interacts with HDAC1; the interaction requires non-phosphorylated RELA. Interacts with CBP; the interaction requires phosphorylated RELA. Interacts (phosphorylated at 'Thr-254') with PIN1; the interaction inhibits p65 binding to NFKBIA. Interacts with SOCS1. Interacts with UXT. Interacts with MTDH and PHF11. Interacts with ARRB2. Interacts with NFKBIA (when phosphorylated), the interaction is direct; phosphorylated NFKBIA is part of a SCF(BTRC)-like complex lacking CUL1. Interacts with RNF25. Interacts (via C-terminus) with DDX1. Interacts with UFL1 and COMMD1. Interacts with BRMS1; this promotes deacetylation of 'Lys-310'. Interacts with NOTCH2 (By similarity). Directly interacts with MEN1; this interaction represses NFKB-mediated transactivation. Interacts with AKIP1, which promotes the phosphorylation and nuclear retention of RELA. Interacts (via the RHD) with GFI1; the interaction, after bacterial lipopolysaccharide (LPS) stimulation, inhibits the transcriptional activity by interfering with the DNA-binding activity to target gene promoter DNA. Interacts (when acetylated at Lys-310) with BRD4; leading to activation of the NF-kappa-B pathway. Interacts with MEFV. Interacts with CLOCK (By similarity). Interacts (via N-terminus) with CPEN1; this interaction induces proteolytic cleavage of p65/RELA subunit and inhibition of NF-kappa-B transcriptional activity. Interacts with FOXP3. Interacts with CDK5RAP3; stimulates the interaction of RELA with HDAC1, HDAC2 and HDAC3 thereby inhibiting NF-kappa-B transcriptional activity. Interacts with DHX9; this interaction is direct and activates NF-kappa-B-mediated transcription. Interacts with LRRC25. Interacts with TBX21 (By similarity). Interacts with KAT2A (By similarity). Interacts with ZBTB7A; involved in the control by RELA of the accessibility of target gene promoters. Directly interacts with DDX3X; this interaction may trap RELA in the cytoplasm, impairing nuclear relocalization upon TNF activating signals.

(Microbial infection) Interacts with human respiratory syncytial virus (HRSV) protein M2-1.

(Microbial infection) Interacts with molluscum contagiosum virus MC132.

(Microbial infection) Interacts with herpes virus 8 virus protein LANA1.

タンパク質ファミリー:

The transcriptional activation domain 3/TA3 does not participate to the direct transcriptional activity of RELA but is involved in the control by RELA of the accessibility of target gene promoters. Mediates interaction with ZBTB7A.

The transcriptional activation domain 1/TA1 and the transcriptional activation domain 2/TA2 have direct transcriptional activation properties (By similarity). The 9aaTAD motif found within the transcriptional activation domain 2 is a conserved motif present in a large number of transcription factors that is required for their transcriptional transactivation activity (PubMed:17467953).

研究領域

· Cellular Processes > Cell growth and death > Apoptosis.   (View pathway)

· Cellular Processes > Cell growth and death > Cellular senescence.   (View pathway)

· Environmental Information Processing > Signal transduction > MAPK signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Ras signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > cAMP signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > NF-kappa B signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > HIF-1 signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Sphingolipid signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > PI3K-Akt signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > TNF signaling pathway.   (View pathway)

· Human Diseases > Drug resistance: Antineoplastic > Antifolate resistance.

· Human Diseases > Endocrine and metabolic diseases > Insulin resistance.

· Human Diseases > Endocrine and metabolic diseases > Non-alcoholic fatty liver disease (NAFLD).

· Human Diseases > Substance dependence > Cocaine addiction.

· Human Diseases > Infectious diseases: Bacterial > Epithelial cell signaling in Helicobacter pylori infection.

· Human Diseases > Infectious diseases: Bacterial > Shigellosis.

· Human Diseases > Infectious diseases: Bacterial > Salmonella infection.

· Human Diseases > Infectious diseases: Bacterial > Pertussis.

· Human Diseases > Infectious diseases: Bacterial > Legionellosis.

· Human Diseases > Infectious diseases: Parasitic > Leishmaniasis.

· Human Diseases > Infectious diseases: Parasitic > Chagas disease (American trypanosomiasis).

· Human Diseases > Infectious diseases: Parasitic > Toxoplasmosis.

· Human Diseases > Infectious diseases: Parasitic > Amoebiasis.

· Human Diseases > Infectious diseases: Bacterial > Tuberculosis.

· Human Diseases > Infectious diseases: Viral > Hepatitis C.

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > Measles.

· Human Diseases > Infectious diseases: Viral > Influenza A.

· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.

· Human Diseases > Infectious diseases: Viral > HTLV-I infection.

· Human Diseases > Infectious diseases: Viral > Herpes simplex infection.

· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Transcriptional misregulation in cancer.

· Human Diseases > Cancers: Overview > Viral carcinogenesis.

· Human Diseases > Cancers: Specific types > Pancreatic cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Prostate cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Chronic myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Acute myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Small cell lung cancer.   (View pathway)

· Human Diseases > Immune diseases > Inflammatory bowel disease (IBD).

· Organismal Systems > Immune system > Chemokine signaling pathway.   (View pathway)

· Organismal Systems > Aging > Longevity regulating pathway.   (View pathway)

· Organismal Systems > Development > Osteoclast differentiation.   (View pathway)

· Organismal Systems > Immune system > Toll-like receptor signaling pathway.   (View pathway)

· Organismal Systems > Immune system > NOD-like receptor signaling pathway.   (View pathway)

· Organismal Systems > Immune system > RIG-I-like receptor signaling pathway.   (View pathway)

· Organismal Systems > Immune system > Cytosolic DNA-sensing pathway.   (View pathway)

· Organismal Systems > Immune system > IL-17 signaling pathway.   (View pathway)

· Organismal Systems > Immune system > Th1 and Th2 cell differentiation.   (View pathway)

· Organismal Systems > Immune system > Th17 cell differentiation.   (View pathway)

· Organismal Systems > Immune system > T cell receptor signaling pathway.   (View pathway)

· Organismal Systems > Immune system > B cell receptor signaling pathway.   (View pathway)

· Organismal Systems > Nervous system > Neurotrophin signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Prolactin signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.

· Organismal Systems > Endocrine system > Relaxin signaling pathway.

参考文献

1). Normalization of magnesium deficiency attenuated mechanical allodynia, depressive-like behaviors, and memory deficits associated with cyclophosphamideinduced cystitis by inhibiting TNF-α/NF-κB signaling in female rats. Journal of Neuroinflammation, 2020 (PubMed: 32241292) [IF=9.3]

Application: WB    Species: Rat    Sample: SDH

Fig. 4 TNF-α/NF-κB signaling and IL-1β were upregulated in the SDH and hippocampus of the CYP-induced cystitis model. a–c Western blot analysis results indicate that TNF-α, the phospho-p65 (p-p65)/p65 ratio, and IL-1β were increased in the SDH of the CYP-induced cystitis model at all three time points (days 8, 12, and 20) after CYP injection. d–f TNF-α, the p-p65/p65 ratio, and IL-1β also showed higher expression in the hippocampus of the cystitis group than in the Veh group at the three time points. *P < 0.05, **P < 0.01, and ***P < 0.001 vs. Veh group. The data were analyzed by one-way ANOVA followed by the Tukey post hoc test

Application: IF/ICC    Species: Rat    Sample: SDH

Fig. 5 TNF-α, p-p65, and IL-1β all co-localize with NeuN in the SDH of CYP-induced cystitis rats. Photographs of the double immunofluorescence staining indicate that TNF-α, p-p65 (a principal transcriptional regulator of the activation of NF-kB pathway), and IL-1β were only co-localized with NeuN-labeled neurons but not with GFAP-labeled astrocytes or OX-42-labeled microglia in the SDH of cystitis animals

2). Extracellular vesicles derived from mesenchymal stem cells alleviate neuroinflammation and mechanical allodynia in interstitial cystitis rats by inhibiting NLRP3 inflammasome activation. Journal of Neuroinflammation, 2022 (PubMed: 35387668) [IF=9.3]

Application: WB    Species: rat    Sample: spinal dorsal horn

Fig. 8 | MSC-EVs inhibit activity of TLR4/NF-κB signal pathway in SDH of IC rats. A–C Western blot analysis showing that expression level of TLR4 and phosphorylation ratio of NF‐κB (p65) were signifcantly increased in SDH of IC rats compared with normal rats, and intrathecal injection of MSC-EVs signifcantly decreased expression level of TLR4 and phosphorylation ratio of NF‐κB (p65) in SDH of IC rats

3). Mitigation of inflammatory bowel disease-related osteoporosis by oxyberberine: Insights into the RANKL/NF-κB signaling pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2024 (PubMed: 38574627) [IF=7.5]

4). Formononetin Protects LPS-Induced Mastitis Through Suppressing Inflammation and Enhancing Blood-Milk Barrier Integrity via AhR-Induced Src Inactivation. Frontiers in Immunology, 2022 (PubMed: 35185907) [IF=7.3]

Application: WB    Species: Mice    Sample: EpH4-Evs cells

Figure 9 FOR inhibits LPS-induced inflammation via AhR-induced Src inactivation. (A) The levels of proinflammatory cytokines TNF-α and IL-1β in EpH4-Evs cells. (B) The expression of NF-κB signaling pathway. (C) The expression of tight junction proteins occludin, claudin-3, and ZO-1 in EpH4-Evs cells. The present results are displayed as the mean ± SEM of triple parallel measurements. #(P < 0.01) is significantly different from control group; **(P < 0.01) is significantly different from LPS group.

5). Radioprotective effect of polyvinylpyrrolidone modified selenium nanoparticles and its antioxidation mechanism in vitro and in vivo. Frontiers in bioengineering and biotechnology, 2024 (PubMed: 38962664) [IF=5.7]

6). Chronic Oral Administration of Magnesium-L-Threonate Prevents Oxaliplatin-Induced Memory and Emotional Deficits by Normalization of TNF-α/NF-κB Signaling in Rats. Neuroscience Bulletin, 2021 (PubMed: 32857294) [IF=5.6]

7). The Causal Role of Magnesium Deficiency in the Neuroinflammation, Pain Hypersensitivity and Memory/Emotional Deficits in Ovariectomized and Aged Female Mice. Journal of Inflammation Research, 2023 (PubMed: 34908863) [IF=4.5]

Application: IF/ICC    Species: Mouse    Sample:

Figure 4 Oral application of L-TAMS attenuates the activation of NF-κB and upregulation of TNF-α and IL-1β in dorsal root ganglion (DRG) neurons of ovariectomized and aged mice. (A–C) Representative immunofluorescent staining images show the expressions of p-p65 (A), TNF-α (B) and IL-1β (C) in DRG neurons in indicated groups. Notes: p-p65 is mainly located in nuclei, while TNF-α and IL-1β in cytoplasm and nerve fibers. Scale bar: 100 μm. (D) Statistical analysis revealed p-p65, TNF-α and IL-1β in DRG neurons were upregulated in OVX and aged mice, and the changes were attenuated by oral L-TAMS (n = 3 mice/group, 2 sections/mouse). The data were analyzed by one-way ANOVA with Tukey’s test.

Application: WB    Species: Mouse    Sample:

Figure 4 Oral application of L-TAMS attenuates the activation of NF-κB and upregulation of TNF-α and IL-1β in dorsal root ganglion (DRG) neurons of ovariectomized and aged mice. (A–C) Representative immunofluorescent staining images show the expressions of p-p65 (A), TNF-α (B) and IL-1β (C) in DRG neurons in indicated groups. Notes: p-p65 is mainly located in nuclei, while TNF-α and IL-1β in cytoplasm and nerve fibers. Scale bar: 100 μm. (D) Statistical analysis revealed p-p65, TNF-α and IL-1β in DRG neurons were upregulated in OVX and aged mice, and the changes were attenuated by oral L-TAMS (n = 3 mice/group, 2 sections/mouse). The data were analyzed by one-way ANOVA with Tukey’s test.

8). Umbilical Cord Mesenchymal Stem Cells Overexpressing Heme Oxygenase-1 Promotes Symptoms Recovery in Cystitis Rats by Alleviating Neuroinflammation. Stem cells international, 2023 (PubMed: 38020203) [IF=4.3]

Application: WB    Species: Rat    Sample:

Figure 8 Transduced hUMSCs inhibit activity of TLR4/p65/NLRP3 signal pathway in SDH region. (a) Immunofluorescence staining of NLRP3 (red), the arrows were pointing to NLRP3 positive cells. Scale bar = 50 μm. (b–e) Western blot analysis showing that expression level of TLR4, phosphorylation ratio of p65, and NLRP3 were significantly decreased in SDH after HO-1-hUMSCs treatment. All data were calculated as mean (±SEM) (n = 6 per group).  ∗ ∗p < 0.01,  ∗ ∗ ∗p < 0.001 vs. the CYP group, and #p < 0.05, ##p < 0.01, and ###p < 0.001 vs. the hUMSC group.

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.