製品: TGF beta 1 Mouse monoclonal Antibody
カタログ: BF8012
タンパク質の説明: Mouse monoclonal antibody to TGF beta 1
アプリケーション: WB IHC
反応性: Human, Mouse, Rat
分子量: 33kDa; 44kD(Calculated).
ユニプロット: P01137

類似製品を見る>>

   サイズ 価格 在庫状況
 100ul $280 在庫あり
 200ul $350 在庫あり

リードタイム: 当日配達

For pricing and ordering contact:
お問い合わせ先

製品説明

ソース:
Mouse
アプリケーション:
WB 1:500-1:3000, IHC 1:50-1:200
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

反応性:
Human,Mouse,Rat
クローナリティ:
Monoclonal [AFfirm8012(AFB19416)]
特異性:
TGF beta1 antibody detects endogenous levels of total TGF beta1.
コンジュゲート:
Unconjugated.
精製:
Affinity-chromatography.
保存:
Mouse IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
別名:

折りたたみ/展開

Cartilage-inducing factor; CED; Differentiation inhibiting factor; DPD1; LAP; Latency-associated peptide; Prepro transforming growth factor beta 1; TGF beta 1; TGF beta; TGF beta 1 protein; TGF-beta 1 protein; TGF-beta-1; TGF-beta-5; TGF-beta1; TGFB; Tgfb-1; tgfb1; TGFB1_HUMAN; TGFbeta; TGFbeta1; Transforming Growth Factor b1; Transforming Growth Factor beta 1; Transforming growth factor beta 1a; transforming growth factor beta-1; transforming growth factor, beta 1; Transforming Growth Factor-ß1;

免疫原

免疫原:

A synthesized peptide derived from human TGF beta1.

Uniprot:
遺伝子(ID):
発現特異性:
P01137 TGFB1_HUMAN:

Highly expressed in bone (PubMed:11746498, PubMed:17827158). Abundantly expressed in articular cartilage and chondrocytes and is increased in osteoarthritis (OA) (PubMed:11746498, PubMed:17827158). Colocalizes with ASPN in chondrocytes within OA lesions of articular cartilage (PubMed:17827158).

タンパク質配列:
MPPSGLRLLLLLLPLLWLLVLTPGRPAAGLSTCKTIDMELVKRKRIEAIRGQILSKLRLASPPSQGEVPPGPLPEAVLALYNSTRDRVAGESAEPEPEPEADYYAKEVTRVLMVETHNEIYDKFKQSTHSIYMFFNTSELREAVPEPVLLSRAELRLLRLKLKVEQHVELYQKYSNNSWRYLSNRLLAPSDSPEWLSFDVTGVVRQWLSRGGEIEGFRLSAHCSCDSRDNTLQVDINGFTTGRRGDLATIHGMNRPFLLLMATPLERAQHLQSSRHRRALDTNYCFSSTEKNCCVRQLYIDFRKDLGWKWIHEPKGYHANFCLGPCPYIWSLDTQYSKVLALYNQHNPGASAAPCCVPQALEPLPIVYYVGRKPKVEQLSNMIVRSCKCS

PTMs - P01137 基板として

Site PTM Type Enzyme
K42 Sumoylation
K42 Ubiquitination
K56 Ubiquitination
N82 N-Glycosylation
K106 Ubiquitination
K163 Ubiquitination
K291 Ubiquitination
K309 Ubiquitination
Y317 Phosphorylation

研究背景

機能:

Transforming growth factor beta-1 proprotein: Precursor of the Latency-associated peptide (LAP) and Transforming growth factor beta-1 (TGF-beta-1) chains, which constitute the regulatory and active subunit of TGF-beta-1, respectively.

Required to maintain the Transforming growth factor beta-1 (TGF-beta-1) chain in a latent state during storage in extracellular matrix. Associates non-covalently with TGF-beta-1 and regulates its activation via interaction with 'milieu molecules', such as LTBP1, LRRC32/GARP and LRRC33/NRROS, that control activation of TGF-beta-1. Interaction with LRRC33/NRROS regulates activation of TGF-beta-1 in macrophages and microglia (Probable). Interaction with LRRC32/GARP controls activation of TGF-beta-1 on the surface of activated regulatory T-cells (Tregs). Interaction with integrins (ITGAV:ITGB6 or ITGAV:ITGB8) results in distortion of the Latency-associated peptide chain and subsequent release of the active TGF-beta-1.

Transforming growth factor beta-1: Multifunctional protein that regulates the growth and differentiation of various cell types and is involved in various processes, such as normal development, immune function, microglia function and responses to neurodegeneration (By similarity). Activation into mature form follows different steps: following cleavage of the proprotein in the Golgi apparatus, Latency-associated peptide (LAP) and Transforming growth factor beta-1 (TGF-beta-1) chains remain non-covalently linked rendering TGF-beta-1 inactive during storage in extracellular matrix. At the same time, LAP chain interacts with 'milieu molecules', such as LTBP1, LRRC32/GARP and LRRC33/NRROS that control activation of TGF-beta-1 and maintain it in a latent state during storage in extracellular milieus. TGF-beta-1 is released from LAP by integrins (ITGAV:ITGB6 or ITGAV:ITGB8): integrin-binding to LAP stabilizes an alternative conformation of the LAP bowtie tail and results in distortion of the LAP chain and subsequent release of the active TGF-beta-1. Once activated following release of LAP, TGF-beta-1 acts by binding to TGF-beta receptors (TGFBR1 and TGFBR2), which transduce signal. While expressed by many cells types, TGF-beta-1 only has a very localized range of action within cell environment thanks to fine regulation of its activation by Latency-associated peptide chain (LAP) and 'milieu molecules' (By similarity). Plays an important role in bone remodeling: acts as a potent stimulator of osteoblastic bone formation, causing chemotaxis, proliferation and differentiation in committed osteoblasts (By similarity). Can promote either T-helper 17 cells (Th17) or regulatory T-cells (Treg) lineage differentiation in a concentration-dependent manner (By similarity). At high concentrations, leads to FOXP3-mediated suppression of RORC and down-regulation of IL-17 expression, favoring Treg cell development (By similarity). At low concentrations in concert with IL-6 and IL-21, leads to expression of the IL-17 and IL-23 receptors, favoring differentiation to Th17 cells (By similarity). Stimulates sustained production of collagen through the activation of CREB3L1 by regulated intramembrane proteolysis (RIP). Mediates SMAD2/3 activation by inducing its phosphorylation and subsequent translocation to the nucleus. Can induce epithelial-to-mesenchymal transition (EMT) and cell migration in various cell types.

PTMs:

Transforming growth factor beta-1 proprotein: The precursor proprotein is cleaved in the Golgi apparatus by FURIN to form Transforming growth factor beta-1 (TGF-beta-1) and Latency-associated peptide (LAP) chains, which remain non-covalently linked, rendering TGF-beta-1 inactive.

N-glycosylated. Deglycosylation leads to activation of Transforming growth factor beta-1 (TGF-beta-1); mechanisms triggering deglycosylation-driven activation of TGF-beta-1 are however unclear.

細胞の位置付け:

Secreted>Extracellular space>Extracellular matrix.

Secreted.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
組織特異性:

Highly expressed in bone. Abundantly expressed in articular cartilage and chondrocytes and is increased in osteoarthritis (OA). Colocalizes with ASPN in chondrocytes within OA lesions of articular cartilage.

サブユニット構造:

Homodimer; disulfide-linked. Interacts with the serine proteases, HTRA1 and HTRA3: the interaction with either inhibits TGFB1-mediated signaling. The HTRA protease activity is required for this inhibition (By similarity). May interact with THSD4; this interaction may lead to sequestration by FBN1 microfibril assembly and attenuation of TGFB signaling (By similarity). Interacts with CD109, DPT and ASPN. Latency-associated peptide: Homodimer; disulfide-linked. Latency-associated peptide: Interacts with Transforming growth factor beta-1 (TGF-beta-1) chain; interaction is non-covalent and maintains (TGF-beta-1) in a latent state; each Latency-associated peptide (LAP) monomer interacts with TGF-beta-1 in the other monomer. Latency-associated peptide: Interacts with LTBP1; leading to regulate activation of TGF-beta-1. Latency-associated peptide: Interacts with LRRC32/GARP; leading to regulate activation of TGF-beta-1 on the surface of activated regulatory T-cells (Tregs). Interacts with LRRC33/NRROS; leading to regulate activation of TGF-beta-1 in macrophages and microglia (Probable). Latency-associated peptide: Interacts (via cell attachment site) with integrins ITGAV and ITGB6 (ITGAV:ITGB6), leading to release of the active TGF-beta-1. Latency-associated peptide: Interacts with NREP; the interaction results in a decrease in TGFB1 autoinduction (By similarity). Latency-associated peptide: Interacts with HSP90AB1; inhibits latent TGFB1 activation. Transforming growth factor beta-1: Homodimer; disulfide-linked. Transforming growth factor beta-1: Interacts with TGF-beta receptors (TGFBR1 and TGFBR2), leading to signal transduction.

タンパク質ファミリー:

The 'straitjacket' and 'arm' domains encircle the Transforming growth factor beta-1 (TGF-beta-1) monomers and are fastened together by strong bonding between Lys-56 and Tyr-103/Tyr-104.

The cell attachment site motif mediates binding to integrins (ITGAV:ITGB6 or ITGAV:ITGB8) (PubMed:28117447). The motif locates to a long loop in the arm domain called the bowtie tail (PubMed:28117447). Integrin-binding stabilizes an alternative conformation of the bowtie tail (PubMed:28117447). Activation by integrin requires force application by the actin cytoskeleton, which is resisted by the 'milieu molecules' (such as LTBP1, LRRC32/GARP and/or LRRC33/NRROS), resulting in distortion of the prodomain and release of the active TGF-beta-1 (PubMed:28117447).

Belongs to the TGF-beta family.

参考文献

1). Airway epithelial ITGB4 deficiency induces airway remodeling in a mouse model. The Journal of allergy and clinical immunology, 2023 (PubMed: 36243221) [IF=14.2]

2). Chrysin ameliorates synovitis and fibrosis of osteoarthritic fibroblast-like synoviocytes in rats through PERK/TXNIP/NLRP3 signaling. Frontiers in Pharmacology, 2023 (PubMed: 37021049) [IF=5.6]

3). The alcohol extracts of Sceptridium ternatum (Thunb.) Lyon exert anti-pulmonary fibrosis effect through targeting SETDB1/STAT3/p-STAT3 signaling. Journal of Ethnopharmacology, 2023 (PubMed: 37120058) [IF=5.4]

4). SIRT1 activation ameliorates rhesus monkey liver fibrosis by inhibiting the TGF-β/smad signaling pathway. Chemico-biological interactions, 2024 (PubMed: 38555046) [IF=5.1]

5). RUNX2 prompts triple negative breast cancer drug resistance through TGF-β pathway regulating breast cancer stem cells. Neoplasia (New York, N.Y.), 2024 (PubMed: 38219710) [IF=4.8]

6). ZIC2 promotes colorectal cancer growth and metastasis through the TGF-β signaling pathway. Experimental Cell Research, 2022 (PubMed: 35390314) [IF=3.7]

7). Kainic acid induced hyperexcitability in thalamic reticular nucleus that initiates an inflammatory response through the HMGB1/TLR4 pathway. NEUROTOXICOLOGY, 2023 (PubMed: 36669621) [IF=3.4]

8). Attenuation of renal fibrosis in mice due to lack of bombesin receptor-activated protein homologue. Clinical and experimental pharmacology & physiology, 2024 (PubMed: 39155151) [IF=2.9]

9). Phloretin targets SIRT1 to alleviate oxidative stress, apoptosis, and inflammation in deep venous thrombosis. Toxicological research, 2024 (PubMed: 38223667) [IF=2.3]

10). Single-Cell RNA-Sequencing Reveals the Cellular and Genetic Heterogeneity of Skin Scar to Verify the Therapeutic Effects and Mechanism of Action of Dispel-Scar Ointment in Hypertrophic Scar Inhibition. Evidence-based Complementary and Alternative Medicine, 2022 (PubMed: 35722137)

Application: IF/ICC    Species: Rat    Sample: skin tissues

Figure 9 (a) Immunofluorescence staining of TGF-β1 and Smad4 in skin tissues. TGF-β1 (red), Smad4 (green), and DAPI (blue). Bar = 100 μm. (b) Immunofluorescence staining of Col1a1 and MMP9 in skin tissues. Col1a1 (red), MMP9 (green), and DAPI (blue). Bar = 100 μm. (c) Quantitative analysis of TGF-β1-positive and Smad4-positive area density; n = 5 for each group. (d) Quantitative analysis of Col1a1- and MMP9-positive area density; n = 5 for each group. Significant differences between different groups or any other groups vs the model group are expressed as ∗=P < 0.05, ∗∗=P < 0.01, and ∗∗∗=P < 0.001, while significant differences between any other group and the control group are expressed as # = P < 0.05, ## = P < 0.01, and ### = P < 0.001.

Application: WB    Species: Rat    Sample:

Figure 10 (a) Expression levels of TGF-β1, pSmad3, pSmad4, Col1a1, and MMP2 proteins were evaluated via (b) western blotting. β-actin levels served as a control (n = 3/group). Significant differences among different groups are indicated as ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, vs model group or with any other group; #P < 0.05, ##P < 0.01, and ###P < 0.01 vs control group.

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.