製品: STAT3 Antibody
カタログ: AF6294
タンパク質の説明: Rabbit polyclonal antibody to STAT3
アプリケーション: WB IHC IF/ICC
反応性: Human, Mouse, Rat
予測: Pig, Bovine, Horse, Sheep, Rabbit, Chicken
分子量: 86kDa; 88kD(Calculated).
ユニプロット: P40763
RRID: AB_2835144

類似製品を見る>>

   サイズ 価格 在庫状況
 100ul $280 在庫あり
 200ul $350 在庫あり

リードタイム: 当日配達

For pricing and ordering contact:
お問い合わせ先

製品説明

ソース:
Rabbit
アプリケーション:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

反応性:
Human,Mouse,Rat
予測:
Pig(91%), Bovine(91%), Horse(91%), Sheep(82%), Rabbit(91%), Chicken(91%)
クローナリティ:
Polyclonal
特異性:
STAT3 Antibody detects endogenous levels of total STAT3.
RRID:
AB_2835144
引用形式: Affinity Biosciences Cat# AF6294, RRID:AB_2835144.
コンジュゲート:
Unconjugated.
精製:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
別名:

折りたたみ/展開

1110034C02Rik; Acute Phase Response Factor; Acute-phase response factor; ADMIO; APRF; AW109958; DNA binding protein APRF; FLJ20882; HIES; MGC16063; Signal transducer and activator of transcription 3 (acute phase response factor); Signal transducer and activator of transcription 3; STAT 3; Stat3; STAT3_HUMAN;

免疫原

免疫原:
Uniprot:
遺伝子(ID):
発現特異性:
P40763 STAT3_HUMAN:

Heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas.

タンパク質の説明:
The protein encoded by this gene is a member of the STAT protein family. In response to cytokines and growth factors, STAT family members are phosphorylated by the receptor associated kinases, and then form homo- or heterodimers that translocate to the cell nucleus where they act as transcription activators.
タンパク質配列:
MAQWNQLQQLDTRYLEQLHQLYSDSFPMELRQFLAPWIESQDWAYAASKESHATLVFHNLLGEIDQQYSRFLQESNVLYQHNLRRIKQFLQSRYLEKPMEIARIVARCLWEESRLLQTAATAAQQGGQANHPTAAVVTEKQQMLEQHLQDVRKRVQDLEQKMKVVENLQDDFDFNYKTLKSQGDMQDLNGNNQSVTRQKMQQLEQMLTALDQMRRSIVSELAGLLSAMEYVQKTLTDEELADWKRRQQIACIGGPPNICLDRLENWITSLAESQLQTRQQIKKLEELQQKVSYKGDPIVQHRPMLEERIVELFRNLMKSAFVVERQPCMPMHPDRPLVIKTGVQFTTKVRLLVKFPELNYQLKIKVCIDKDSGDVAALRGSRKFNILGTNTKVMNMEESNNGSLSAEFKHLTLREQRCGNGGRANCDASLIVTEELHLITFETEVYHQGLKIDLETHSLPVVVISNICQMPNAWASILWYNMLTNNPKNVNFFTKPPIGTWDQVAEVLSWQFSSTTKRGLSIEQLTTLAEKLLGPGVNYSGCQITWAKFCKENMAGKGFSFWVWLDNIIDLVKKYILALWNEGYIMGFISKERERAILSTKPPGTFLLRFSESSKEGGVTFTWVEKDISGKTQIQSVEPYTKQQLNNMSFAEIIMGYKIMDATNILVSPLVYLYPDIPKEEAFGKYCRPESQEHPEADPGSAAPYLKTKFICVTPTTCSNTIDLPMSPRTLDSLMQFGNNGEGAEPSAGGQFESLTFDMELTSECATSPM

種類予測

種類予測:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Pig
91
Horse
91
Bovine
91
Chicken
91
Rabbit
91
Sheep
82
Zebrafish
75
Dog
0
Xenopus
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

PTMs - P40763 基板として

Site PTM Type Enzyme
A2 Acetylation
S25 Phosphorylation
Y45 Phosphorylation
K49 Acetylation
K49 Methylation
Y68 Phosphorylation
Y79 Phosphorylation
K87 Acetylation
K87 Ubiquitination
K97 Ubiquitination
K140 Ubiquitination
K153 Ubiquitination
K161 Ubiquitination
K163 Ubiquitination
Y176 Phosphorylation
K177 Sumoylation
K177 Ubiquitination
K180 Ubiquitination
S181 Phosphorylation
S194 Phosphorylation
T196 Phosphorylation
K199 Ubiquitination
T236 Phosphorylation
K244 Ubiquitination
K283 Ubiquitination
K290 Ubiquitination
K294 Ubiquitination
K318 Ubiquitination
K348 Ubiquitination
K363 Ubiquitination
K365 Ubiquitination
K370 Acetylation
K370 Ubiquitination
K383 Ubiquitination
K409 Ubiquitination
S429 Phosphorylation
T440 Phosphorylation
Y446 Phosphorylation
K451 Sumoylation
K495 Sumoylation
Y539 Phosphorylation
S540 Phosphorylation
K551 Ubiquitination
K574 Ubiquitination
K601 Acetylation
K601 Ubiquitination
T605 Phosphorylation
K615 Acetylation
K615 Ubiquitination
K626 Ubiquitination
K631 Acetylation
K631 Ubiquitination
T632 Phosphorylation
S636 Phosphorylation
Y640 Phosphorylation
T641 Phosphorylation
K642 Ubiquitination
Y674 Phosphorylation
K679 Ubiquitination
K685 Acetylation
K685 Ubiquitination
Y686 Phosphorylation
S691 Phosphorylation
S701 Phosphorylation
Y705 Phosphorylation O60674 (JAK2) , Q15300 (RET/PTC2) , P23458 (JAK1) , P22455 (FGFR4) , P27361 (MAPK3) , Q13882 (PTK6) , P22607 (FGFR3) , Q9UM73 (ALK) , P14618 (PKM) , P16591 (FER) , P12931 (SRC)
K707 Acetylation
K707 Ubiquitination
T708 Phosphorylation
T714 Phosphorylation
T717 Phosphorylation
S719 Phosphorylation
T721 Phosphorylation
S727 Phosphorylation P51812 (RPS6KA3) , P45984-2 (MAPK9) , Q13233 (MAP3K1) , O75582 (RPS6KA5) , P28482 (MAPK1) , Q13555 (CAMK2G) , O43293 (DAPK3) , P42345 (MTOR) , P27361 (MAPK3) , Q02156 (PRKCE) , P45983 (MAPK8) , P51617 (IRAK1) , Q16539 (MAPK14) , Q05655 (PRKCD) , Q9UBE8 (NLK) , P06493 (CDK1) , Q00535 (CDK5) , Q9HC98 (NEK6)
S754 Phosphorylation

研究背景

機能:

Signal transducer and transcription activator that mediates cellular responses to interleukins, KITLG/SCF, LEP and other growth factors. Once activated, recruits coactivators, such as NCOA1 or MED1, to the promoter region of the target gene. May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4. Binds to the interleukin-6 (IL-6)-responsive elements identified in the promoters of various acute-phase protein genes. Activated by IL31 through IL31RA. Acts as a regulator of inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17 or regulatory T-cells (Treg): deacetylation and oxidation of lysine residues by LOXL3, leads to disrupt STAT3 dimerization and inhibit its transcription activity. Involved in cell cycle regulation by inducing the expression of key genes for the progression from G1 to S phase, such as CCND1. Mediates the effects of LEP on melanocortin production, body energy homeostasis and lactation (By similarity). May play an apoptotic role by transctivating BIRC5 expression under LEP activation. Cytoplasmic STAT3 represses macroautophagy by inhibiting EIF2AK2/PKR activity. Plays a crucial role in basal beta cell functions, such as regulation of insulin secretion (By similarity).

PTMs:

Tyrosine phosphorylated upon stimulation with EGF. Tyrosine phosphorylated in response to constitutively activated FGFR1, FGFR2, FGFR3 and FGFR4 (By similarity). Activated through tyrosine phosphorylation by BMX. Tyrosine phosphorylated in response to IL6, IL11, LIF, CNTF, KITLG/SCF, CSF1, EGF, PDGF, IFN-alpha, LEP and OSM. Activated KIT promotes phosphorylation on tyrosine residues and subsequent translocation to the nucleus. Phosphorylated on serine upon DNA damage, probably by ATM or ATR. Serine phosphorylation is important for the formation of stable DNA-binding STAT3 homodimers and maximal transcriptional activity. ARL2BP may participate in keeping the phosphorylated state of STAT3 within the nucleus. Upon LPS challenge, phosphorylated within the nucleus by IRAK1. Upon erythropoietin treatment, phosphorylated on Ser-727 by RPS6KA5. Phosphorylation at Tyr-705 by PTK6 or FER leads to an increase of its transcriptional activity. Dephosphorylation on tyrosine residues by PTPN2 negatively regulates IL6/interleukin-6 signaling.

Acetylated on lysine residues by CREBBP. Deacetylation by LOXL3 leads to disrupt STAT3 dimerization and inhibit STAT3 transcription activity. Oxidation of lysine residues to allysine on STAT3 preferentially takes place on lysine residues that are acetylated.

Some lysine residues are oxidized to allysine by LOXL3, leading to disrupt STAT3 dimerization and inhibit STAT3 transcription activity. Oxidation of lysine residues to allysine on STAT3 preferentially takes place on lysine residues that are acetylated.

(Microbial infection) Phosphorylated on Tyr-705 in the presence of S.typhimurium SarA.

S-palmitoylated by ZDHHC19 in SH2 putative lipid-binding pockets, leading to homodimerization. Nuclear STAT3 is highly palmitoylated (about 75%) compared with cytoplasmic STAT3 (about 20%).

S-stearoylated, probably by ZDHHC19.

細胞の位置付け:

Cytoplasm. Nucleus.
Note: Shuttles between the nucleus and the cytoplasm. Translocated into the nucleus upon tyrosine phosphorylation and dimerization, in response to signaling by activated FGFR1, FGFR2, FGFR3 or FGFR4. Constitutive nuclear presence is independent of tyrosine phosphorylation. Predominantly present in the cytoplasm without stimuli. Upon leukemia inhibitory factor (LIF) stimulation, accumulates in the nucleus. The complex composed of BART and ARL2 plays an important role in the nuclear translocation and retention of STAT3. Identified in a complex with LYN and PAG1.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
組織特異性:

Heart, brain, placenta, lung, liver, skeletal muscle, kidney and pancreas.

サブユニット構造:

Forms a homodimer or a heterodimer with a related family member (at least STAT1). Interacts with IL31RA, NCOA1, PELP1, SIPAR, SOCS7, STATIP1 and TMF1 (By similarity). Interacts with IL23R in presence of IL23. Interacts (via SH2 domain) with NLK. Interacts with ARL2BP; the interaction is enhanced by LIF and JAK1 expression (By similarity). Interacts with KPNA4 and KPNA5; KPNA4 may be the primary mediator of nuclear import (By similarity). Interacts with CAV2; the interaction is increased on insulin-induced tyrosine phosphorylation of CAV2 and leads to STAT3 activation (By similarity). Interacts with ARL2BP; interaction is enhanced with ARL2. Interacts with NEK6 (By similarity). Binds to CDK9 when activated and nuclear. Interacts with BMX. Interacts with ZIPK/DAPK3. Interacts with PIAS3; the interaction occurs on stimulation by IL6, CNTF or OSM and inhibits the DNA binding activity of STAT3. In prostate cancer cells, interacts with STAT3 and promotes DNA binding activity of STAT3. Interacts with STMN3, antagonizing its microtubule-destabilizing activity. Interacts with the 'Lys-129' acetylated form of BIRC5/survivin. Interacts with FER. Interacts (via SH2 domain) with EIF2AK2/PKR (via the kinase catalytic domain). Interacts with STAT3; the interaction is independent of STAT3 Tyr-705 phosphorylation status. Interacts with FGFR4. Interacts with OCAD1 (By similarity). Interacts with ZDHHC19, leading to palmitoylation which promotes homodimerization and activation.

(Microbial infection) Interacts with HCV core protein.

(Microbial infection) Interacts with S.typhimurium SarA.

タンパク質ファミリー:

Belongs to the transcription factor STAT family.

研究領域

· Cellular Processes > Cell growth and death > Necroptosis.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Signaling pathways regulating pluripotency of stem cells.   (View pathway)

· Environmental Information Processing > Signal transduction > HIF-1 signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > FoxO signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Jak-STAT signaling pathway.   (View pathway)

· Human Diseases > Drug resistance: Antineoplastic > EGFR tyrosine kinase inhibitor resistance.

· Human Diseases > Endocrine and metabolic diseases > Insulin resistance.

· Human Diseases > Infectious diseases: Parasitic > Toxoplasmosis.

· Human Diseases > Infectious diseases: Viral > Hepatitis C.

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > Measles.

· Human Diseases > Infectious diseases: Viral > Epstein-Barr virus infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Viral carcinogenesis.

· Human Diseases > Cancers: Overview > Proteoglycans in cancer.

· Human Diseases > Cancers: Overview > MicroRNAs in cancer.

· Human Diseases > Cancers: Specific types > Pancreatic cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Acute myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Non-small cell lung cancer.   (View pathway)

· Human Diseases > Immune diseases > Inflammatory bowel disease (IBD).

· Organismal Systems > Immune system > Chemokine signaling pathway.   (View pathway)

· Organismal Systems > Immune system > Th17 cell differentiation.   (View pathway)

· Organismal Systems > Endocrine system > Prolactin signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.

参考文献

1). Aligned electrospun poly(l-lactide) nanofibers facilitate wound healing by inhibiting macrophage M1 polarization via the JAK-STAT and NF-κB pathways. JOURNAL OF NANOBIOTECHNOLOGY, 2022 (PubMed: 35883095) [IF=10.2]

Application: WB    Species: Mice    Sample:

Fig. 3 The underlying mechanism by which aligned fibers affected macrophage polarization. A Venn diagram showing differentially expressed genes. B KEGG pathway analysis between the A20 and R20 groups. C Heatmap of differentially expressed genes among the three groups. D Heatmap of macrophage polarization-related genes between the A20 and R20 groups. E Volcano diagram of differentially expressed genes. F Western blot analysis of the NF-κB signaling pathway. G Immunofluorescence staining showing the nuclear translocation of NF-κB p65. The nucleus is stained blue, and NF-κB p65 protein is stained red. H Western blot images and semiquantitative analysis of the JAK-STAT signaling pathway (*p < 0.05, **p < 0.01, n = 3)

2). CYSLTR1 antagonist inhibits Th17 cell differentiation by regulating the NF-κB signaling for the treatment of psoriasis. International journal of biological sciences, 2024 (PubMed: 38617532) [IF=8.2]

3). Tofacitinib Promotes Functional Recovery after Spinal Cord Injury by Regulating Microglial Polarization via JAK/STAT Signaling Pathway. International Journal of Biological Sciences, 2023 (PubMed: 37781508) [IF=8.2]

4). Apigenin ameliorates imiquimod-induced psoriasis in C57BL/6J mice by inactivating STAT3 and NF-κB. Food Science and Human Wellness, 2024 [IF=7.0]

Application: WB    Species: Mouse    Sample: skin tissues

Figure 2 Gla ameliorated liver inflammation induced by ethanol via activating the NF-κB pathway in vivo. (A–D) Protein levels of p-NF-κB, NF-κB, IL-6, TNF-α, NLRP3, pro-caspase1, cleaved-caspase1, ASC, pro-IL-1β, and IL-1β were determined using Western blot method (n = 6). (E–G) mRNA levels of Nlrp3, Caspase1, and Asc were determined by qPCR (n = 5). (H–J) Serum levels of IL-1β, IL-6, and TNF-α (n = 5). ns, not significant; * p < 0.05; ** p < 0.01 vs. “Con” group; # p < 0.05, ## p < 0.01 vs. “EtOH” group.

5). Acid sphingomyelinase downregulation alleviates vascular endothelial leptin resistance in rats. ACTA PHARMACOLOGICA SINICA, 2020 (PubMed: 31848475) [IF=6.9]

Application: WB    Species: Rat    Sample: rat aortic endothelial cells (RAECs)

Fig. 1 ASM downregulation improved PA-induced leptin resistance in RAECs. Western blot gels and summarized data showing the protein expression of Ob-Rb (a) and SOCS3 (b) in RAECs treated with PA (0.1, 0.2, and 0.3 mM) with or without 100 nM leptin. RAECs were incubated with 0.3 mM PA for 24 h and were then transfected with ASM siRNA for 24 h. Then, 100 nM leptin was added for 15 min prior to the collection of the cells. Then, Western blotting and an AmpliteTM Fluorimetric Kit were used to test the protein expression of ASM (c) and ASM activity (d), respectively, in RAECs. Representative fluorescence images (e, scale bar = 20 μm) and summarized data showing the mean fluorescent intensity (MFI) of a FITC-labeled anti-ceramide antibody (f). The photographs were taken at ×400 magnification. The protein expression of ObRb (g) and SOCS3 (h) and the ratio of p-STAT3/STAT3 (i) was determined using Western blotting. The data are the means ± SEMs from three experiments. *P < 0.05 vs. scramble control (Scr Ctrl); #P < 0.05 vs. the PA alone-treated group

6). Formononetin protects against inflammation associated with cerebral ischemia-reperfusion injury in rats by targeting the JAK2/STAT3 signaling pathway. BIOMEDICINE & PHARMACOTHERAPY, 2022 (PubMed: 35339827) [IF=6.9]

7). Melatonin derivatives combat with inflammation-related cancer by targeting the Main Culprit STAT3. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2021 (PubMed: 33248852) [IF=6.0]

Application: WB    Species: human    Sample: HCT-116 cells and MGC-803 cells

Figure 8. (A) Compound P-3 down-regulated the levels of IL-6 and TNF-α in RAW 264.7. The cell viability of RAW 264.7 is higher than 80% under the treatment of compound P-3 at indicated concentrations. (B) Compound P-3 suppressed the expression of STAT3, phosphorylated STAT3, and Bcl-2 in both HCT-116 and MGC-803 cells. (C) Compound P-3 inhibited the nuclear translocation and the total amount of STAT3 in both HCT-116 and MGC-803 cells. Data are presented as mean ± SD from three independent experiments. * P < 0.05, ** P<0.01, *** P<0.001 versus the control group.

Application: IF/ICC    Species: human    Sample: HCT-116 cells and MGC-803 cells

Figure 8. (A) Compound P-3 down-regulated the levels of IL-6 and TNF-α in RAW 264.7. The cell viability of RAW 264.7 is higher than 80% under the treatment of compound P-3 at indicated concentrations. (B) Compound P-3 suppressed the expression of STAT3, phosphorylated STAT3, and Bcl-2 in both HCT-116 and MGC-803 cells. (C) Compound P-3 inhibited the nuclear translocation and the total amount of STAT3 in both HCT-116 and MGC-803 cells. Data are presented as mean ± SD from three independent experiments. * P < 0.05, ** P<0.01, *** P<0.001 versus the control group.

8). The synthesis and bioactivity of pyrrolo[2,3-d]pyrimidine derivatives as tyrosine kinase inhibitors for NSCLC cells with EGFR mutations. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2021 (PubMed: 34315040) [IF=6.0]

Application: WB    Species: Human    Sample: HBE, A549, NCIeH1975, HCC827 cell

Fig. 4. Inhibition of the phosphorylation of the EGFR signaling pathway by compound 12h (A), 12i (B) and avitinib (C) in HBE, A549, NCIeH1975, HCC827 cell lines.

9). N-2-(phenylamino) benzamide derivatives as novel anti-glioblastoma agents: Synthesis and biological evaluation. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2021 (PubMed: 34537445) [IF=6.0]

Application: WB    Species: Rat    Sample: tumor tissue

Fig. 10. I-1 and I-8 decreased PGE2 production, VEGFA expression, STAT3 activation in a rat C6 glioma orthotopic model in vivo. A. I-1 reduced p-STAT3 expression of tumor regions. Magnification: 47.3 , Scale ¼ 50 mm. The blue fluorescence represents the nucleus and the red fluorescence represents the expression of p-STAT3. B. I-1 and I-8 decreased PGE2 production measured by ELISA method. C. The ratio of p-STAT3/STAT3 from Western blot assay. D. Statistical data of VEGFA expression from Western blot assay. E. Western blot images of p-STAT3, STAT3, VEGFA, b-actin. Data are presented as the mean ± SD of at least three independent assays. *P < 0.05; **P < 0.01, ***P < 0.001 compared with the C6 group. ###P < 0.001 compared with the sham group. TMZ represents temozolomide.

10). Chemoproteomics reveals berberine directly binds to PKM2 to inhibit the progression of colorectal cancer. iScience, 2022 (PubMed: 35992091) [IF=5.8]

もっと読みます

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.