製品: Smad2/3 Antibody
カタログ: AF6367
タンパク質の説明: Rabbit polyclonal antibody to Smad2/3
アプリケーション: WB IHC IF/ICC
反応性: Human, Mouse, Rat
予測: Pig, Sheep, Dog, Chicken, Xenopus
分子量: 60kDa; 48kD,52kD(Calculated).
ユニプロット: P84022 | Q15796
RRID: AB_2835211

類似製品を見る>>

   サイズ 価格 在庫状況
 100ul $280 在庫あり
 200ul $350 在庫あり

リードタイム: 当日配達

For pricing and ordering contact:
お問い合わせ先

製品説明

ソース:
Rabbit
アプリケーション:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

反応性:
Human,Mouse,Rat
予測:
Pig(100%), Sheep(100%), Dog(100%), Chicken(100%), Xenopus(100%)
クローナリティ:
Polyclonal
特異性:
Smad2/3 Antibody detects endogenous levels of total Smad2/3.
RRID:
AB_2835211
引用形式: Affinity Biosciences Cat# AF6367, RRID:AB_2835211.
コンジュゲート:
Unconjugated.
精製:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
別名:

折りたたみ/展開

DKFZP586N0721; DKFZp686J10186; hMAD 3; hMAD-3; hSMAD3; HSPC193; HST17436; JV15 2; JV15-2; JV152; LDS1C; LDS3; MAD (mothers against decapentaplegic Drosophila) homolog 3; MAD homolog 3; Mad homolog JV15 2; Mad protein homolog; MAD, mothers against decapentaplegic homolog 3; Mad3; MADH 3; MADH3; MGC60396; Mothers against decapentaplegic homolog 3; Mothers against DPP homolog 3; SMA and MAD related protein 3; SMAD 3; SMAD; SMAD family member 3; SMAD, mothers against DPP homolog 3; Smad3; SMAD3_HUMAN; Drosophila, homolog of, MADR2; hMAD-2; HsMAD2; JV18; JV18-1; JV181; MAD; MAD homolog 2; MAD Related Protein 2; Mad-related protein 2; MADH2; MADR2; MGC22139; MGC34440; Mother against DPP homolog 2; Mothers against decapentaplegic homolog 2; Mothers against decapentaplegic, Drosophila, homolog of, 2; Mothers against DPP homolog 2; OTTHUMP00000163489; Sma and Mad related protein 2; Sma- and Mad-related protein 2 MAD; SMAD 2; SMAD family member 2; SMAD, mothers against DPP homolog 2; SMAD2; SMAD2_HUMAN;

免疫原

免疫原:
Uniprot:
遺伝子(ID):
発現特異性:
Q15796 SMAD2_HUMAN:

Expressed at high levels in skeletal muscle, endothelial cells, heart and placenta.

タンパク質の説明:
Smad2 ubiquitously expressed transcription factor phosphorylated and activated by TGF-beta receptor-type kinases. Participates in a wide range of critical processes including morphogenesis, cell-fate determination, proliferation, differentiation and apoptosis.
タンパク質配列:
MSSILPFTPPIVKRLLGWKKGEQNGQEEKWCEKAVKSLVKKLKKTGQLDELEKAITTQNVNTKCITIPRSLDGRLQVSHRKGLPHVIYCRLWRWPDLHSHHELRAMELCEFAFNMKKDEVCVNPYHYQRVETPVLPPVLVPRHTEIPAEFPPLDDYSHSIPENTNFPAGIEPQSNIPETPPPGYLSEDGETSDHQMNHSMDAGSPNLSPNPMSPAHNNLDLQPVTYCEPAFWCSISYYELNQRVGETFHASQPSMTVDGFTDPSNSERFCLGLLSNVNRNAAVELTRRHIGRGVRLYYIGGEVFAECLSDSAIFVQSPNCNQRYGWHPATVCKIPPGCNLKIFNNQEFAALLAQSVNQGFEAVYQLTRMCTIRMSFVKGWGAEYRRQTVTSTPCWIELHLNGPLQWLDKVLTQMGSPSIRCSSVS

MSSILPFTPPVVKRLLGWKKSAGGSGGAGGGEQNGQEEKWCEKAVKSLVKKLKKTGRLDELEKAITTQNCNTKCVTIPSTCSEIWGLSTPNTIDQWDTTGLYSFSEQTRSLDGRLQVSHRKGLPHVIYCRLWRWPDLHSHHELKAIENCEYAFNLKKDEVCVNPYHYQRVETPVLPPVLVPRHTEILTELPPLDDYTHSIPENTNFPAGIEPQSNYIPETPPPGYISEDGETSDQQLNQSMDTGSPAELSPTTLSPVNHSLDLQPVTYSEPAFWCSIAYYELNQRVGETFHASQPSLTVDGFTDPSNSERFCLGLLSNVNRNATVEMTRRHIGRGVRLYYIGGEVFAECLSDSAIFVQSPNCNQRYGWHPATVCKIPPGCNLKIFNNQEFAALLAQSVNQGFEAVYQLTRMCTIRMSFVKGWGAEYRRQTVTSTPCWIELHLNGPLQWLDKVLTQMGSPSVRCSSMS

種類予測

種類予測:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Pig
100
Sheep
100
Dog
100
Xenopus
100
Chicken
100
Horse
0
Bovine
0
Zebrafish
0
Rabbit
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

PTMs - P84022/Q15796 基板として

Site PTM Type Enzyme
Ubiquitination
S2 Acetylation
S3 Phosphorylation
T8 Phosphorylation P11802 (CDK4) , P24941 (CDK2)
K13 Ubiquitination
K19 Acetylation
K29 Acetylation
K33 Ubiquitination
K36 Sumoylation
S37 Phosphorylation
K63 Ubiquitination
T66 Phosphorylation P49841 (GSK3B)
S78 Phosphorylation
K81 Ubiquitination
Y88 Phosphorylation
Y125 Phosphorylation
T132 Phosphorylation
T179 Phosphorylation P49336 (CDK8) , P28482 (MAPK1) , P24941 (CDK2) , P50750 (CDK9) , P11802 (CDK4) , P31749 (AKT1)
S204 Phosphorylation P28482 (MAPK1) , Q14680 (MELK) , Q16539 (MAPK14) , P27361 (MAPK3) , P11802 (CDK4)
S208 Phosphorylation P49336 (CDK8) , P11802 (CDK4) , P28482 (MAPK1) , Q16539 (MAPK14) , P50750 (CDK9)
S213 Phosphorylation P50750 (CDK9) , P49336 (CDK8) , P11802 (CDK4) , P28482 (MAPK1) , P24941 (CDK2)
S275 Phosphorylation
S309 Phosphorylation
K378 Acetylation
T388 Phosphorylation
T412 Phosphorylation
S416 Phosphorylation
S418 Phosphorylation P78368 (CSNK1G2)
S422 Phosphorylation P36897 (TGFBR1)
S423 Phosphorylation P36897 (TGFBR1)
S425 Phosphorylation P36897 (TGFBR1)
Site PTM Type Enzyme
Ubiquitination
S2 Acetylation
S2 Phosphorylation
T8 Phosphorylation P27361 (MAPK3) , P24941 (CDK2)
K13 Ubiquitination
K19 Acetylation
K20 Acetylation
S21 Phosphorylation
K39 Acetylation
K46 Sumoylation
S47 Phosphorylation
K63 Ubiquitination
Y102 Phosphorylation
S110 Phosphorylation Q9UQM7 (CAMK2A) , Q9H4A3 (WNK1)
S118 Phosphorylation
K121 Ubiquitination
Y128 Phosphorylation
K156 Sumoylation
K156 Ubiquitination
K157 Ubiquitination
Y165 Phosphorylation
T172 Phosphorylation
T197 Phosphorylation P25098 (GRK2)
T220 Phosphorylation P28482 (MAPK1) , P27361 (MAPK3)
S240 Phosphorylation Q9UQM7 (CAMK2A)
S245 Phosphorylation Q14680 (MELK) , P28482 (MAPK1) , P27361 (MAPK3)
S250 Phosphorylation P28482 (MAPK1) , P27361 (MAPK3)
S255 Phosphorylation P28482 (MAPK1) , P27361 (MAPK3)
S260 Phosphorylation Q9UQM7 (CAMK2A) , Q9H4A3 (WNK1)
S317 Phosphorylation
T324 Phosphorylation
S417 Phosphorylation Q13177 (PAK2)
K420 Acetylation
S458 Phosphorylation
S460 Phosphorylation
S464 Phosphorylation P36897 (TGFBR1) , O00238 (BMPR1B)
S465 Phosphorylation Q9H4A3 (WNK1) , P36897 (TGFBR1) , O00238 (BMPR1B) , O96013 (PAK4) , Q8NER5 (ACVR1C)
S467 Phosphorylation O00238 (BMPR1B) , P36897 (TGFBR1) , Q8NER5 (ACVR1C)

研究背景

機能:

Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD3/SMAD4 complex, activates transcription. Also can form a SMAD3/SMAD4/JUN/FOS complex at the AP-1/SMAD site to regulate TGF-beta-mediated transcription. Has an inhibitory effect on wound healing probably by modulating both growth and migration of primary keratinocytes and by altering the TGF-mediated chemotaxis of monocytes. This effect on wound healing appears to be hormone-sensitive. Regulator of chondrogenesis and osteogenesis and inhibits early healing of bone fractures. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.

PTMs:

Phosphorylated on serine and threonine residues. Enhanced phosphorylation in the linker region on Thr-179, Ser-204 and Ser-208 on EGF and TGF-beta treatment. Ser-208 is the main site of MAPK-mediated phosphorylation. CDK-mediated phosphorylation occurs in a cell-cycle dependent manner and inhibits both the transcriptional activity and antiproliferative functions of SMAD3. This phosphorylation is inhibited by flavopiridol. Maximum phosphorylation at the G(1)/S junction. Also phosphorylated on serine residues in the C-terminal SXS motif by TGFBR1 and ACVR1. TGFBR1-mediated phosphorylation at these C-terminal sites is required for interaction with SMAD4, nuclear location and transactivational activity, and appears to be a prerequisite for the TGF-beta mediated phosphorylation in the linker region. Dephosphorylated in the C-terminal SXS motif by PPM1A. This dephosphorylation disrupts the interaction with SMAD4, promotes nuclear export and terminates TGF-beta-mediated signaling. Phosphorylation at Ser-418 by CSNK1G2/CK1 promotes ligand-dependent ubiquitination and subsequent proteasome degradation, thus inhibiting SMAD3-mediated TGF-beta responses. Phosphorylated by PDPK1.

Acetylation in the nucleus by EP300 in the MH2 domain regulates positively its transcriptional activity and is enhanced by TGF-beta.

Poly-ADP-ribosylated by PARP1 and PARP2. ADP-ribosylation negatively regulates SMAD3 transcriptional responses during the course of TGF-beta signaling.

Ubiquitinated. Monoubiquitinated, leading to prevent DNA-binding. Deubiquitination by USP15 alleviates inhibition and promotes activation of TGF-beta target genes. Ubiquitinated by RNF111, leading to its degradation: only SMAD3 proteins that are 'in use' are targeted by RNF111, RNF111 playing a key role in activating SMAD3 and regulating its turnover (By similarity). Undergoes STUB1-mediated ubiquitination and degradation.

細胞の位置付け:

Cytoplasm. Nucleus.
Note: Cytoplasmic and nuclear in the absence of TGF-beta. On TGF-beta stimulation, migrates to the nucleus when complexed with SMAD4 (PubMed:15799969). Through the action of the phosphatase PPM1A, released from the SMAD2/SMAD4 complex, and exported out of the nucleus by interaction with RANBP1 (PubMed:16751101, PubMed:19289081). Co-localizes with LEMD3 at the nucleus inner membrane (PubMed:15601644). MAPK-mediated phosphorylation appears to have no effect on nuclear import (PubMed:19218245). PDPK1 prevents its nuclear translocation in response to TGF-beta (PubMed:17327236).

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
サブユニット構造:

Monomer; in the absence of TGF-beta. Homooligomer; in the presence of TGF-beta. Heterotrimer; forms a heterotrimer in the presence of TGF-beta consisting of two molecules of C-terminally phosphorylated SMAD2 or SMAD3 and one of SMAD4 to form the transcriptionally active SMAD2/SMAD3-SMAD4 complex. Interacts with TGFBR1. Part of a complex consisting of AIP1, ACVR2A, ACVR1B and SMAD3. Interacts with AIP1, TGFB1I1, TTRAP, FOXL2, PML, PRDM16, HGS, WWP1 and SNW1. Interacts (via MH2 domain) with CITED2 (via C-terminus). Interacts with NEDD4L; the interaction requires TGF-beta stimulation. Interacts (via MH2 domain) with ZFYVE9. Interacts with HDAC1, TGIF and TGIF2, RUNX3, CREBBP, SKOR1, SKOR2, SNON, ATF2, SMURF2 and TGFB1I1. Interacts with DACH1; the interaction inhibits the TGF-beta signaling. Forms a complex with SMAD2 and TRIM33 upon addition of TGF-beta. Found in a complex with SMAD3, RAN and XPO4. Interacts in the complex directly with XPO4. Interacts (via MH2 domain) with LEMD3; the interaction represses SMAD3 transcriptional activity through preventing the formation of the heteromeric complex with SMAD4 and translocation to the nucleus. Interacts with RBPMS. Interacts (via MH2 domain) with MECOM. Interacts with WWTR1 (via its coiled-coil domain). Interacts (via the linker region) with EP300 (C-terminal); the interaction promotes SMAD3 acetylation and is enhanced by TGF-beta phosphorylation in the C-terminal of SMAD3. This interaction can be blocked by competitive binding of adenovirus oncoprotein E1A to the same C-terminal site on EP300, which then results in partially inhibited SMAD3/SMAD4 transcriptional activity. Interacts with SKI; the interaction represses SMAD3 transcriptional activity. Component of the multimeric complex SMAD3/SMAD4/JUN/FOS which forms at the AP1 promoter site; required for synergistic transcriptional activity in response to TGF-beta. Interacts (via an N-terminal domain) with JUN (via its basic DNA binding and leucine zipper domains); this interaction is essential for DNA binding and cooperative transcriptional activity in response to TGF-beta. Interacts with PPM1A; the interaction dephosphorylates SMAD3 in the C-terminal SXS motif leading to disruption of the SMAD2/3-SMAD4 complex, nuclear export and termination of TGF-beta signaling. Interacts (dephosphorylated form via the MH1 and MH2 domains) with RANBP3 (via its C-terminal R domain); the interaction results in the export of dephosphorylated SMAD3 out of the nucleus and termination of the TGF-beta signaling. Interacts with MEN1. Interacts with IL1F7. Interaction with CSNK1G2. Interacts with PDPK1 (via PH domain). Interacts with DAB2; the interactions are enhanced upon TGF-beta stimulation. Interacts with USP15. Interacts with PPP5C; the interaction decreases SMAD3 phosphorylation and protein levels. Interacts with LDLRAD4 (via the SMAD interaction motif). Interacts with PMEPA1. Interacts with ZC3H3 (By similarity). Interacts with ZNF451. Identified in a complex that contains at least ZNF451, SMAD2, SMAD3 and SMAD4. Interacts with ZFHX3. Interacts weakly with ZNF8. Interacts (when phosphorylated) with RNF111; RNF111 acts as an enhancer of the transcriptional responses by mediating ubiquitination and degradation of SMAD3 inhibitors (By similarity). Interacts with STUB1, HSPA1A, HSPA1B, HSP90AA1 and HSP90AB1. Interacts (via MH2 domain) with ZMIZ1 (via SP-RING-type domain); in the TGF-beta signaling pathway increases the activity of the SMAD3/SMAD4 transcriptional complex.

タンパク質ファミリー:

The MH1 domain is required for DNA binding. Also binds zinc ions which are necessary for the DNA binding.

The MH2 domain is required for both homomeric and heteromeric interactions and for transcriptional regulation. Sufficient for nuclear import.

The linker region is required for the TGFbeta-mediated transcriptional activity and acts synergistically with the MH2 domain.

Belongs to the dwarfin/SMAD family.

機能:

Receptor-regulated SMAD (R-SMAD) that is an intracellular signal transducer and transcriptional modulator activated by TGF-beta (transforming growth factor) and activin type 1 receptor kinases. Binds the TRE element in the promoter region of many genes that are regulated by TGF-beta and, on formation of the SMAD2/SMAD4 complex, activates transcription. May act as a tumor suppressor in colorectal carcinoma. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator.

PTMs:

Phosphorylated on one or several of Thr-220, Ser-245, Ser-250, and Ser-255. In response to TGF-beta, phosphorylated on Ser-465/467 by TGF-beta and activin type 1 receptor kinases. TGF-beta-induced Ser-465/467 phosphorylation declines progressively in a KMT5A-dependent manner. Able to interact with SMURF2 when phosphorylated on Ser-465/467, recruiting other proteins, such as SNON, for degradation. In response to decorin, the naturally occurring inhibitor of TGF-beta signaling, phosphorylated on Ser-240 by CaMK2. Phosphorylated by MAPK3 upon EGF stimulation; which increases transcriptional activity and stability, and is blocked by calmodulin. Phosphorylated by PDPK1.

In response to TGF-beta, ubiquitinated by NEDD4L; which promotes its degradation. Monoubiquitinated, leading to prevent DNA-binding (By similarity). Deubiquitination by USP15 alleviates inhibition and promotes activation of TGF-beta target genes. Ubiquitinated by RNF111, leading to its degradation: only SMAD2 proteins that are 'in use' are targeted by RNF111, RNF111 playing a key role in activating SMAD2 and regulating its turnover (By similarity).

Acetylated on Lys-19 by coactivators in response to TGF-beta signaling, which increases transcriptional activity. Isoform short: Acetylation increases DNA binding activity in vitro and enhances its association with target promoters in vivo. Acetylation in the nucleus by EP300 is enhanced by TGF-beta.

細胞の位置付け:

Cytoplasm. Nucleus.
Note: Cytoplasmic and nuclear in the absence of TGF-beta. On TGF-beta stimulation, migrates to the nucleus when complexed with SMAD4 (PubMed:9865696). On dephosphorylation by phosphatase PPM1A, released from the SMAD2/SMAD4 complex, and exported out of the nucleus by interaction with RANBP1 (PubMed:16751101, PubMed:19289081).

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
組織特異性:

Expressed at high levels in skeletal muscle, endothelial cells, heart and placenta.

サブユニット構造:

Monomer; the absence of TGF-beta. Heterodimer; in the presence of TGF-beta. Forms a heterodimer with co-SMAD, SMAD4, in the nucleus to form the transactivation complex SMAD2/SMAD4. Interacts with AIP1, HGS, PML and WWP1 (By similarity). Interacts with NEDD4L in response to TGF-beta (By similarity). Found in a complex with SMAD3 and TRIM33 upon addition of TGF-beta. Interacts with ACVR1B, SMAD3 and TRIM33. Interacts (via the MH2 domain) with ZFYVE9; may form trimers with the SMAD4 co-SMAD. Interacts with FOXH1, homeobox protein TGIF, PEBP2-alpha subunit, CREB-binding protein (CBP), EP300, SKI and SNW1. Interacts with SNON; when phosphorylated at Ser-465/467. Interacts with SKOR1 and SKOR2. Interacts with PRDM16. Interacts (via MH2 domain) with LEMD3. Interacts with RBPMS. Interacts with WWP1. Interacts (dephosphorylated form, via the MH1 and MH2 domains) with RANBP3 (via its C-terminal R domain); the interaction results in the export of dephosphorylated SMAD3 out of the nucleus and termination of the TGF-beta signaling. Interacts with PDPK1 (via PH domain). Interacts with DAB2; the interactions are enhanced upon TGF-beta stimulation. Interacts with USP15. Interacts with PPP5C. Interacts with ZNF580. Interacts with LDLRAD4 (via the SMAD interaction motif). Interacts (via MH2 domain) with PMEPA1 (via the SMAD interaction motif). Interacts with ZFHX3. Interacts with ZNF451. Identified in a complex that contains at least ZNF451, SMAD2, SMAD3 and SMAD4. Interacts weakly with ZNF8 (By similarity). Interacts (when phosphorylated) with RNF111; RNF111 acts as an enhancer of the transcriptional responses by mediating ubiquitination and degradation of SMAD2 inhibitors (By similarity).

タンパク質ファミリー:

Belongs to the dwarfin/SMAD family.

研究領域

· Cellular Processes > Cell growth and death > Cell cycle.   (View pathway)

· Cellular Processes > Transport and catabolism > Endocytosis.   (View pathway)

· Cellular Processes > Cell growth and death > Cellular senescence.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Adherens junction.   (View pathway)

· Cellular Processes > Cellular community - eukaryotes > Signaling pathways regulating pluripotency of stem cells.   (View pathway)

· Environmental Information Processing > Signal transduction > FoxO signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Wnt signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > TGF-beta signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Apelin signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Hippo signaling pathway.   (View pathway)

· Human Diseases > Infectious diseases: Parasitic > Chagas disease (American trypanosomiasis).

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > HTLV-I infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Proteoglycans in cancer.

· Human Diseases > Cancers: Specific types > Colorectal cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Pancreatic cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Chronic myeloid leukemia.   (View pathway)

· Human Diseases > Cancers: Specific types > Hepatocellular carcinoma.   (View pathway)

· Human Diseases > Cancers: Specific types > Gastric cancer.   (View pathway)

· Human Diseases > Immune diseases > Inflammatory bowel disease (IBD).

· Organismal Systems > Immune system > Th17 cell differentiation.   (View pathway)

· Organismal Systems > Endocrine system > Relaxin signaling pathway.

参考文献

1). G protein-coupled receptor kinase 2 as a novel therapeutic target for gland fibrosis of Sjögren's syndrome. Acta pharmacologica Sinica, 2024 (PubMed: 39054339) [IF=6.9]

2). Cyclic helix B peptide promotes random‐pattern skin flap survival via TFE3‐mediated enhancement of autophagy and reduction of ROS levels. British Journal of Pharmacology, 2022 (PubMed: 34622942) [IF=6.8]

3). L-Glutamine alleviates osteoarthritis by regulating lncRNA-NKILA expression through the TGF-β1/SMAD2/3 signalling pathway. Clinical Science, 2022 (PubMed: 35730575) [IF=6.7]

4). RUNX2 prompts triple negative breast cancer drug resistance through TGF-β pathway regulating breast cancer stem cells. Neoplasia (New York, N.Y.), 2024 (PubMed: 38219710) [IF=6.3]

5). Chelerythrine chloride inhibits the progression of colorectal cancer by targeting cancer-associated fibroblasts through intervention with WNT10B/β-catenin and TGFβ2/Smad2/3 axis. Phytotherapy research : PTR, 2023 (PubMed: 37402476) [IF=6.1]

6). Bmp8a deletion leads to obesity through regulation of lipid metabolism and adipocyte differentiation. Communications Biology, 2023 (PubMed: 37553521) [IF=5.9]

Application: WB    Species: Mouse    Sample: 3T3-L1 cells

Fig. 5 Bmp8a activates Smad2/3 signaling to inhibit adipocyte differentiation in 3T3-L1 cells. a–d Representative western blot analysis and quantification of changes in p-Smad1/5/8, p-Smad2/3, p-ERK1/2, p-p38 MAPK, and p-JNK expression in LV-bmp8a cells (a, b) or LV-Bmp8a cells (c, d). Protein expression levels were quantified using ImageJ software and normalized to the amount of total protein (n = 3). e, f Representative Oil Red O staining photographs of LV-bmp8a and LV-Bmp8a 3T3-L1 cells were induced to adipogenic in the presence of DMH1 or TP0427736 HCL, dimethylsulfoxide (DMSO) as a vehicle and subjected to OD492 quantifications (n = 3). Scale bar = 20 µm. g Schematic diagram of BMP8 mediated signal transduction. BMP8 can activate Smad1/5/8 signal transduction through the receptor complex formed by type I receptor ALK2, ALK3, or ALK6 and type II receptor ACVR2A or BMPR2. Meanwhile, BMP8 can also activate Smad2/3 signal transduction through the receptor complex formed by type I receptors ALK4 or ALK5 and type II receptors ACVR2A, ACVR2B, or TGFBR2. h Non-expression of mouse Alk6 gene in 3T3-L1 cells (n = 3). i The qPCR quantification of the type I receptor (Alk2, Alk3, Alk4, Alk5, Alk7) and type II receptor (Acvr2a, Acvr2b, Bmpr2, Tgrβr2) transcripts expressed in 3T3-L1 cells (n = 3). j, k Quantification of the activity of BRE-driven luciferase reporters with pCMV-bmp8a (j) or pCMV-Bmp8a (k) cotransfected with pCMV-Alk2, pCMV-Alk3, pCMV-Bmpr2, pCMV-Acrv2a, respectively (n = 3). Renilla luciferase was used as the internal control. l, m Quantification of the activity of CAGA-driven luciferase reporters with pCMV-bmp8a (l) or pCMV-Bmp8a (m) cotransfected with pCMV-Alk2, pCMV-Alk3, pCMV-Bmpr2, and pCMV-Acrv2a, respectively (n = 3). Renilla luciferase was used as the internal control. Data were representative of at least three independent experiments. Data were analyzed by One-way ANOVA and presented as mean ± SD

7). BMP8B Activates Both SMAD2/3 and NF-κB Signals to Inhibit the Differentiation of 3T3-L1 Preadipocytes into Mature Adipocytes. Nutrients, 2023 (PubMed: 38201894) [IF=5.9]

8). Suppressive effect mediated by human adipose-derived stem cells on T cells involves the activation of JNK. International Journal of Molecular Medicine, 2019 (PubMed: 30365063) [IF=5.7]

Application: WB    Species: human    Sample: control and co‑cultured Jurkat cells

Figure 6. |Signaling pathways. (A) Protein levels of Erk, p‑Erk, P38, p‑P38, JNK, p‑JNK, Smad2/3 and P‑Smad2/3 in the control and co‑cultured Jurkat cells. (B) Densitometric analysis of the expression of Erk, p‑Erk, P38 and p‑P38.

9). Exosomes Derived from Epidermal Stem Cells Improve Diabetic Wound Healing. Journal of Investigative Dermatology, 2022 (PubMed: 35181300) [IF=5.7]

Application: WB    Species: Human    Sample:

Supplementary Figure S8. ESCs-Exo treatment of FB in vitro activates TGFb and Akt signaling. (a‒c) Expression levels of TGFb1, SMAD2/3, and quantification. (d‒g) Expression levels of TGFb2, TGFb3, pSMAD2/3 (Thr8), and quantification. (h‒k) Expression levels of Akt and pAkt and quantification. n ¼ 3 biological replicates. Data are represented as mean SD; one-way ANOVA with Fisher’s posthoc test. *P < 0.05 versus control and #P < 0.05 versus FB-Exo. Akt, protein kinase B; ESC-Exo, epidermal stem cellederived exosome; FB, fibroblast; FB-Exo, fibroblast-derived exosome; pAkt, phosphorylated protein kinase B; pSMAD, phosphorylated SMAD.

10). Inhibition of proliferation-linked signaling cascades with atractylenolide I reduces myofibroblastic phenotype and renal fibrosis. BIOCHEMICAL PHARMACOLOGY, 2021 (PubMed: 33221275) [IF=5.3]

Application: WB    Species: mice    Sample: kidneys tissue

Figure 8. ATL-1 inhibits the activities of Smad2/3 in vivo and in vitro. Immunofluorescence staining revealed that ATL-1 inhibited the expression and nuclear localization of Smad2/3 in TGF-β1-treated NRK-49F cells (A), NRK-52E cells (B) and in UUO kidneys (C). Bar = 25 µm in vitro; Bar = 50 µm in vivo. Western blotting results showed that ATL-1 inhibited the expression and phosphorylation of Smad2/3 in TGF-β1-treated NRK-49F cells (D) and NRK-52E cells (E) and in UUO kidneys (F). Veh, vehicle; ATL-1, atractylenolide I; UUO, unilateral ureteral obstruction. Data are expressed as means ± SEM in quintuplicate for the cell line experiment or for nine mice per group. *P < 0.05, **P < 0.01, ***P < 0.001.

もっと読みます

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.