製品: GAPDH Antibody
カタログ: AF0911
タンパク質の説明: Rabbit polyclonal antibody to GAPDH
アプリケーション: WB IF/ICC
Cited expt.: WB
反応性: Human, Mouse, Rat, Pig, Zebrafish, Monkey
予測: Pig, Zebrafish, Horse, Rabbit, Dog, Chicken, Xenopus
分子量: 37KD; 36kD(Calculated).
ユニプロット: P04406
RRID: AB_2839422

類似製品を見る>>

   サイズ 価格 在庫状況
 50ul $150 在庫あり
 100ul $250 在庫あり
 200ul $350 在庫あり
 1ml $1200 在庫あり

リードタイム: 当日配達

For pricing and ordering contact:
お問い合わせ先

製品説明

ソース:
Rabbit
アプリケーション:
WB 1:5000-1:50000, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

反応性:
Human,Mouse,Rat,Pig,Zebrafish,Monkey
予測:
Horse(100%), Rabbit(100%), Dog(100%), Chicken(89%), Xenopus(89%)
クローナリティ:
Polyclonal
特異性:
GAPDH antibody detects endogenous levels of total GAPDH protein from human and monkey.Is unsuitable for MOUSE and RAT,not yet tested in other species.
RRID:
AB_2839422
引用形式: Affinity Biosciences Cat# AF0911, RRID:AB_2839422.
コンジュゲート:
Unconjugated.
精製:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
保存:
Rabbit IgG in phosphate buffered saline, pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
別名:

折りたたみ/展開

GAPDH, A1 40 kd subunit, Activator 1 40 kd subunit, G3PD, GAPD, G3pdh, Rfc40, Rf-c 40 kd subunit

免疫原

免疫原:

A synthesized peptide derived from human GAPDH.

Uniprot:
遺伝子(ID):
タンパク質の説明:
Glyceraldehyde 3 phosphate dehydrogenase (GAPDH) is well known as one of the key enzymes involved in glycolysis. GAPDH is constitutively abundant expressed in almost cell types at high levels, therefore antibodies against GAPDH are useful as loading controls for Western Blotting. Some pathology factors, such as hypoxia and diabetes, increased or decreased GAPDH expression in certain cell types.
タンパク質配列:
MGKVKVGVNGFGRIGRLVTRAAFNSGKVDIVAINDPFIDLNYMVYMFQYDSTHGKFHGTVKAENGKLVINGNPITIFQERDPSKIKWGDAGAEYVVESTGVFTTMEKAGAHLQGGAKRVIISAPSADAPMFVMGVNHEKYDNSLKIISNASCTTNCLAPLAKVIHDNFGIVEGLMTTVHAITATQKTVDGPSGKLWRDGRGALQNIIPASTGAAKAVGKVIPELNGKLTGMAFRVPTANVSVVDLTCRLEKPAKYDDIKKVVKQASEGPLKGILGYTEHQVVSSDFNSDTHSSTFDAGAGIALNDHFVKLISWYDNEFGYSNRVVDLMAHMASKE

種類予測

種類予測:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Pig
100
Horse
100
Dog
100
Zebrafish
100
Rabbit
100
Xenopus
89
Chicken
89
Bovine
78
Sheep
78
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

研究背景

機能:

Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation.

PTMs:

S-nitrosylation of Cys-152 leads to interaction with SIAH1, followed by translocation to the nucleus (By similarity). S-nitrosylation of Cys-247 is induced by interferon-gamma and LDL(ox) implicating the iNOS-S100A8/9 transnitrosylase complex and seems to prevent interaction with phosphorylated RPL13A and to interfere with GAIT complex activity.

ISGylated.

Sulfhydration at Cys-152 increases catalytic activity.

Oxidative stress can promote the formation of high molecular weight disulfide-linked GAPDH aggregates, through a process called nucleocytoplasmic coagulation. Such aggregates can be observed in vivo in the affected tissues of patients with Alzheimer disease or alcoholic liver cirrhosis, or in cell cultures during necrosis. Oxidation at Met-46 may play a pivotal role in the formation of these insoluble structures. This modification has been detected in vitro following treatment with free radical donor (+/-)-(E)-4-ethyl-2-[(E)-hydroxyimino]-5-nitro-3-hexenamide. It has been proposed to destabilize nearby residues, increasing the likelihood of secondary oxidative damages, including oxidation of Tyr-45 and Met-105. This cascade of oxidations may augment GAPDH misfolding, leading to intermolecular disulfide cross-linking and aggregation.

Succination of Cys-152 and Cys-247 by the Krebs cycle intermediate fumarate, which leads to S-(2-succinyl)cysteine residues, inhibits glyceraldehyde-3-phosphate dehydrogenase activity. Fumarate concentration as well as succination of cysteine residues in GAPDH is significantly increased in muscle of diabetic mammals. It was proposed that the S-(2-succinyl)cysteine chemical modification may be a useful biomarker of mitochondrial and oxidative stress in diabetes and that succination of GAPDH and other thiol proteins by fumarate may contribute to the metabolic changes underlying the development of diabetes complications.

細胞の位置付け:

Cytoplasm>Cytosol. Nucleus. Cytoplasm>Perinuclear region. Membrane. Cytoplasm>Cytoskeleton.
Note: Translocates to the nucleus following S-nitrosylation and interaction with SIAH1, which contains a nuclear localization signal (By similarity). Postnuclear and Perinuclear regions.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
タンパク質ファミリー:

The [IL]-x-C-x-x-[DE] motif is a proposed target motif for cysteine S-nitrosylation mediated by the iNOS-S100A8/A9 transnitrosylase complex.

Belongs to the glyceraldehyde-3-phosphate dehydrogenase family.

研究領域

· Environmental Information Processing > Signal transduction > HIF-1 signaling pathway.   (View pathway)

· Human Diseases > Neurodegenerative diseases > Alzheimer's disease.

· Metabolism > Carbohydrate metabolism > Glycolysis / Gluconeogenesis.

· Metabolism > Global and overview maps > Metabolic pathways.

· Metabolism > Global and overview maps > Carbon metabolism.

· Metabolism > Global and overview maps > Biosynthesis of amino acids.

参考文献

1). Rapamycin prevents spontaneous abortion by triggering decidual stromal cell autophagy-mediated NK cell residence. Autophagy, 2021 (PubMed: 33030400) [IF=14.6]

Application: WB    Species: Mouse    Sample:

Figure 5. TNFRSF14 enhances adhesion ability of DSC through MMP9. (A) MMP9 levels in vehicle or rapamycin-treated control or siTNFRSF14 DSCs (n = 6 per group) were analyzed by RT-PCR. (B) The transcription level of MMP9 in ESCs (n = 5) and DSCs (n = 6) was analyzed by RT-PCR. (C) The MMP9 transcription levels in ATG5over ESCs (n = 4), control ESCs (n = 4), siATG5 DSCs (n = 8) and control DSCs (n = 8) were analyzed by RT-PCR. (D) The level of MMP9 protein in ATG5over (n = 3) and control ESCs (n = 3) was detected by western blotting. (E) After treatment with different concentrations (0, 1, 10, 100, 1000 µM) of edaravone, the expression of MMP9 in DSCs (n = 6) was evaluated by western blotting. (F) The expression of adhesion molecules in DSCs (n = 6) after 1 mM edaravone treatment was analyzed by flow cytometry. (G) After treatment with C57 pregnant mice by vehicle (1% DMSO) (n = 5) or edaravone (n = 5, 2 mg/kg, daily). The embryo resorption rates of the two groups were compared (H) and the weight of the embryo and placenta was recorded (I) at the gestation of day 13.5. At the gestation of day 7.5, the proportion of PTPRC+ immune cells (J,K) in the uterus, the proportion and number of CD3− KLRB1+ NK cells (J,L) and the expression of adhesion molecules on VIM+ USCs (M,N) of pregnant mice were analyzed by flow cytometry (n = 7 per group). Data were presented as mean ± SEM or median and quartile and analyzed by t test or ANOVA. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, NS: no significance

2). Isorhamnetin and anti-PD-L1 antibody dual-functional mesoporous silica nanoparticles improve tumor immune microenvironment and inhibit YY1-mediated tumor progression. Journal of nanobiotechnology, 2023 (PubMed: 37408047) [IF=10.2]

Application: WB    Species: human    Sample: siUSP7 PLC-PRF-5 and HepG2 cells

Fig. 3 USP7 stabilizes YY1 expression through deubiquitination. (A) Effect of USP7 on YY1 expression in PLC-PRF-5 and HepG2 cells as detected by Western blot. (B) Changes in YY1 expression after transfection with different amounts of Flag-USP7 vector. (C) Western blot analysis of the change in YY1 expression in siUSP7 PLC-PRF-5 and HepG2 cells treated with or without MG132. (D) Effect of USP7 on YY1 degradation in PLC-PRF-5 cells transfected with siUSP7 or Flag-USP7 vector and treated with CHX. (E) Effect of USP7 on YY1 ubiquitination in PLC-PRF-5 cells treated with siUSP7 and Flag-YY1. Flag beads were used for immunoprecipitation. (F) Effect of USP7 on YY1 ubiquitination in PLC-PRF-5 cells treated with Flag-USP7. YY1 antibody was used for immunoprecipitation. Data are expressed as the mean ± SD (*P 

3). TNFSF14+ natural killer cells prevent spontaneous abortion by restricting leucine-mediated decidual stromal cell senescence. The EMBO journal, 2024 (PubMed: 39261664) [IF=9.4]

Application: WB    Species: human    Sample:

Figure 1. The decidualization process is accompanied with senescent DSCs. (A) Subpopulation of stromal cells of secretory endometrium and decidua in t-SNE plots through single-cell sequencing. (B) QuSAGE analysis of ESCs and DSCs through single-cell sequencing. (C) Bubble diagram presented the average expression of cell cycle and senescence-associated secretory phenotype (SASP) related genes based on the results of single-cell sequencing. (D) Human ESC cell line (hESCs) was treated with 8-bromo-cAMP (0.5 mM) plus MPA (1 μM) for different times, and western blotting assay was used to detect the expression of CDKN2A, CDKN1A, TP53 (indicator of cell senescence) and PRL. (E) SAβG staining (indicator of cell senescence) and statistical data of decidualized hESCs (n = 3 biological replicates per group). (F) Primary ESCs were treated with 8-bromo-cAMP (0.5 mM) plus MPA (1 μM) for 4 days, and the protein of CDKN2A, CDKN1A, TP53, and PRL were measured by western blotting (n = 3 biological replicates per group), relative expression levels of proteins were standardized using internal reference GAPDH. (G) SAβG staining in primary ESCs (n = 4 biological replicates) and primary DSCs (n = 4 biological replicates). Statistical data were presented as mean ± SEM. **P 

4). CP-25 inhibits the hyperactivation of rheumatic synoviocytes by suppressing the switch in Gαs-Gαi coupling to the β2-adrenergic receptor. Cell communication and signaling : CCS, 2023 (PubMed: 38037039) [IF=8.4]

Application: WB    Species: Rat    Sample:

Fig. 3 β2AR inhibits cAMP production in CIA-FLSs by coupling with Gαi instead of Gαs. A Intracellular cAMP production in ISO (1 μM)-treated normal rat FLSs that were pretreated with Bar (10 μM), Gαs siRNA, or Gαi siRNA was detected in the FRET system. B The membrane and cytosolic distribution of β2AR after ISO stimulation was evaluated in normal and βarr2-deficient rat FLSs. C The cytosolic expression of β2AR was quantified. D The membrane expression of β2AR was quantified. E–G The binding of β2AR with Gαs or Gαi in FLSs from normal and CIA rats was determined by co-IP, and the data were analysed. H-J The expression of Gαs, Gαi, and β2AR in normal and CIA rat FLSs was analysed using input samples. K The effect of knocking down βarr2, Gαs, or Gαi on ISO-induced FLS viability was evaluated by a CCK-8 assay. L The effect of knocking down βarr2, Gαs, or Gαi on ISO-induced FLS migration was analysed. M The effect of knocking down βarr2, Gαs, or Gαi on ISO-induced FLS invasion was analysed. The data are presented as the means ± SEMs; *p 

5). LAP2α orchestrates alternative lengthening of telomeres suppression through telomeric heterochromatin regulation with HDAC1: unveiling a potential therapeutic target. Cell death & disease, 2024 (PubMed: 39426946) [IF=8.1]

Application: WB    Species: human    Sample: U2OS and Hela cells

Fig. 1: LAP2α interacted with shelterin complex and LAP2α deficiency induced dysfunctional telomeres of ALT-positive cells. A, B PLA of LAP2α and subunit of shelterin complex in U2OS cells and Hela cells transfected with control or LAP2α siRNA. Red dots represent PLA signals. C U2OS and Hela cells were infected with control or LAP2α siRNA for 3 days. Cell lysates were subjected to western blot analysis with anti-LAP2α and anti-GAPDH antibodies. GAPDH was used as the loading control. D Quantification of the LAP2α relative protein level in comparison to GAPDH and to siNC was calculated by ImageJ software. Error bars represent the mean ± SEM of four independent experiments. Two-tailed unpaired Student’s t-test was used to calculate p-values. **p 

6). GPR158 in pyramidal neurons mediates social novelty behavior via modulating synaptic transmission in male mice. Cell reports, 2024 (PubMed: 39383040) [IF=7.5]

7). Insulin promotes the bone formation capability of human dental pulp stem cells through attenuating the IIS/PI3K/AKT/mTOR pathway axis. Stem cell research & therapy, 2024 (PubMed: 39075596) [IF=7.5]

Application: WB    Species: Human    Sample: DPSCs

Fig. 4 10− 6 M insulin inhibits the gene and protein expressions of the IIS-related receptors and substrates in human DPSCs. A 10− 6 M insulin down-regulated the mRNA levels of INSR, IGF1R, and IRS1 in DPSCs at day 3 and day 7. B 10− 6 M insulin inhibited the protein expressions of INSR, IGF1R, and IRS1 in DPSCs at day 7. Representative western blotting (left) and quantification analysis (right). Full-length blots/gels are presented in Supplementary Fig. 2. Data are expressed as the mean ± SD of n = 3.

8). Xylanase improves the intestinal barrier function of Nile tilapia (Oreochromis niloticus) fed with soybean (Glycine max) meal. Journal of Animal Science and Biotechnology, 2023 (PubMed: 37415202) [IF=7.0]

Application: WB    Species: Fish    Sample: Nile tilapia

Fig. 4 Effects of dietary xylanase on the inflammation response in Nile tilapia. Gene level of A Nuclear factor kappa B (nfkb), B Interleukin 1 beta (il1β) and C Caspase3 (casp3) (n = 6), D Western blot analysis of intestinal P65 and IL1β (n = 3), E Quantitation of the levels of P65 and IL1β normalized to that of GAPDH (n = 3). Data was expressed as mean ± SEM. SM, fish fed with soybean diet; SMC, fish fed with soybean diet supplemented with 3,000 U/kg xylanase. The significant differences between two group were presented at P 

9). G protein-coupled receptor kinase 2 as a novel therapeutic target for gland fibrosis of Sjögren's syndrome. Acta pharmacologica Sinica, 2024 (PubMed: 39054339) [IF=6.9]

10). Emodin targets mitochondrial cyclophilin D to induce apoptosis in HepG2 cells. BIOMEDICINE & PHARMACOTHERAPY, 2017 (PubMed: 28363167) [IF=6.9]

Application: WB    Species: human    Sample:

Fig. 3. Effects of ROS and ERK on CypD expression. Cells were treated with emodin in the absence or presence of 5mM CsA or 10 ng/mL EGF for 48 h, or 5 mM NAC for 6 h. Protein expression was determined by western blots. (A) CypD expression in the absence or presence of CsA. (B) p-ERK expression induced by emodin. (C) CypD expression in the absence or presence of EGF. (D) CypD expression in the absence or presence of NAC. (E) Determination of emodin-induced cytotoxicity activity in the absence or presence of EGF or NAC by MTT assay. Values are expressed as the means  SD; n = 3, * p < 0.05 versus control.

もっと読みます

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.