Insulin secretion
Pancreatic beta cells are specialised endocrine cells that continuously sense the levels of blood sugar and other fuels and, in response, secrete insulin to maintain normal fuel homeostasis. Glucose-induced insulin secretion and its potentiation constitute the principal mechanism of insulin release. Glucose is transported by the glucose transporter (GLUT) into the pancreatic beta-cell. Metabolism of glucose generates ATP, which inhibits ATP-sensitive K+ channels and causes voltage-dependent Ca2+ influx. Elevation of [Ca2+]i triggers exocytotic release of insulin granules. Insulin secretion is further regulated by several hormones and neurotransmitters. Peptide hormones, such as glucagon-like peptide 1 (GLP-1), increase cAMP levels and thereby potentiate insulin secretion via the combined action of PKA and Epac2. Achetylcholine (ACh), a major parasympathetic neurotransmitter, binds to Gq-coupled receptors and activates phospholipase C- (PLC-), and the stimulatory effects involve activation of protein kinase C (PKC), which stimulates exocytosis. In addition, ACh mobilizes intracellular Ca2+ by activation of IP3 receptors.